L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.650 + 2.00i)3-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (−1.70 + 1.23i)6-s + (−0.675 − 2.07i)7-s + (−0.309 + 0.951i)8-s + (−1.15 − 0.841i)9-s − 10-s + (1.92 − 2.69i)11-s − 2.10·12-s + (5.11 + 3.71i)13-s + (0.675 − 2.07i)14-s + (−0.650 − 2.00i)15-s + (−0.809 + 0.587i)16-s + (−1.34 + 0.980i)17-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.375 + 1.15i)3-s + (0.154 + 0.475i)4-s + (−0.361 + 0.262i)5-s + (−0.695 + 0.505i)6-s + (−0.255 − 0.785i)7-s + (−0.109 + 0.336i)8-s + (−0.386 − 0.280i)9-s − 0.316·10-s + (0.581 − 0.813i)11-s − 0.607·12-s + (1.41 + 1.03i)13-s + (0.180 − 0.555i)14-s + (−0.167 − 0.516i)15-s + (−0.202 + 0.146i)16-s + (−0.327 + 0.237i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.0320−0.999i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(−0.0320−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.0320−0.999i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), −0.0320−0.999i)
|
Particular Values
L(1) |
≈ |
0.832391+0.859550i |
L(21) |
≈ |
0.832391+0.859550i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 5 | 1+(0.809−0.587i)T |
| 11 | 1+(−1.92+2.69i)T |
good | 3 | 1+(0.650−2.00i)T+(−2.42−1.76i)T2 |
| 7 | 1+(0.675+2.07i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−5.11−3.71i)T+(4.01+12.3i)T2 |
| 17 | 1+(1.34−0.980i)T+(5.25−16.1i)T2 |
| 19 | 1+(−1.82+5.60i)T+(−15.3−11.1i)T2 |
| 23 | 1+3.26T+23T2 |
| 29 | 1+(1.95+6.00i)T+(−23.4+17.0i)T2 |
| 31 | 1+(3.74+2.72i)T+(9.57+29.4i)T2 |
| 37 | 1+(0.849+2.61i)T+(−29.9+21.7i)T2 |
| 41 | 1+(2.89−8.90i)T+(−33.1−24.0i)T2 |
| 43 | 1−1.29T+43T2 |
| 47 | 1+(−0.582+1.79i)T+(−38.0−27.6i)T2 |
| 53 | 1+(6.36+4.62i)T+(16.3+50.4i)T2 |
| 59 | 1+(−2.47−7.63i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−3.51+2.55i)T+(18.8−58.0i)T2 |
| 67 | 1−5.61T+67T2 |
| 71 | 1+(11.1−8.10i)T+(21.9−67.5i)T2 |
| 73 | 1+(−4.32−13.3i)T+(−59.0+42.9i)T2 |
| 79 | 1+(1.40+1.02i)T+(24.4+75.1i)T2 |
| 83 | 1+(7.25−5.27i)T+(25.6−78.9i)T2 |
| 89 | 1−13.3T+89T2 |
| 97 | 1+(9.72+7.06i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.92606969781827734011197713882, −13.25924323600472505776993372078, −11.32445193223612458914362496832, −11.22861070096016187705338665510, −9.754541321505697330857018621409, −8.580069537788415620838678924642, −7.00559574022296404104842225870, −5.92668513505927428335398998632, −4.31216959498749642487471087521, −3.68825457008564817390724446662,
1.60723876779165351558593010346, 3.63049455671947928067562183886, 5.49954960020109966081034279669, 6.44825516578789026062001732864, 7.72996963386780191064911582078, 9.056881361958071134853068963183, 10.54789210899685806361513179030, 11.82059917985809652901718436237, 12.39325572033259848767265856262, 13.03235290782806362180391455517