L(s) = 1 | + (−0.618 − 1.90i)2-s + (−0.396 − 0.287i)3-s + (−3.23 + 2.35i)4-s + (−1.54 + 4.75i)5-s + (−0.302 + 0.931i)6-s + (19.1 − 13.9i)7-s + (6.47 + 4.70i)8-s + (−8.26 − 25.4i)9-s + 10.0·10-s + (−35.9 − 6.11i)11-s + 1.95·12-s + (−22.0 − 67.9i)13-s + (−38.3 − 27.8i)14-s + (1.98 − 1.43i)15-s + (4.94 − 15.2i)16-s + (−8.55 + 26.3i)17-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (−0.0762 − 0.0554i)3-s + (−0.404 + 0.293i)4-s + (−0.138 + 0.425i)5-s + (−0.0206 + 0.0634i)6-s + (1.03 − 0.751i)7-s + (0.286 + 0.207i)8-s + (−0.306 − 0.942i)9-s + 0.316·10-s + (−0.985 − 0.167i)11-s + 0.0471·12-s + (−0.470 − 1.44i)13-s + (−0.731 − 0.531i)14-s + (0.0341 − 0.0247i)15-s + (0.0772 − 0.237i)16-s + (−0.122 + 0.375i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.746+0.665i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(−0.746+0.665i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.746+0.665i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), −0.746+0.665i)
|
Particular Values
L(2) |
≈ |
0.362357−0.950530i |
L(21) |
≈ |
0.362357−0.950530i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.618+1.90i)T |
| 5 | 1+(1.54−4.75i)T |
| 11 | 1+(35.9+6.11i)T |
good | 3 | 1+(0.396+0.287i)T+(8.34+25.6i)T2 |
| 7 | 1+(−19.1+13.9i)T+(105.−326.i)T2 |
| 13 | 1+(22.0+67.9i)T+(−1.77e3+1.29e3i)T2 |
| 17 | 1+(8.55−26.3i)T+(−3.97e3−2.88e3i)T2 |
| 19 | 1+(−3.30−2.39i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1+74.7T+1.21e4T2 |
| 29 | 1+(−229.+166.i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(92.0+283.i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(89.3−64.9i)T+(1.56e4−4.81e4i)T2 |
| 41 | 1+(−151.−110.i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1−131.T+7.95e4T2 |
| 47 | 1+(−97.8−71.0i)T+(3.20e4+9.87e4i)T2 |
| 53 | 1+(−165.−509.i)T+(−1.20e5+8.75e4i)T2 |
| 59 | 1+(−421.+305.i)T+(6.34e4−1.95e5i)T2 |
| 61 | 1+(216.−665.i)T+(−1.83e5−1.33e5i)T2 |
| 67 | 1−710.T+3.00e5T2 |
| 71 | 1+(−62.2+191.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(458.−332.i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(349.+1.07e3i)T+(−3.98e5+2.89e5i)T2 |
| 83 | 1+(444.−1.36e3i)T+(−4.62e5−3.36e5i)T2 |
| 89 | 1−575.T+7.04e5T2 |
| 97 | 1+(255.+785.i)T+(−7.38e5+5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64165922808025300088317993018, −11.59387261217012300432387729109, −10.67755385066721554271095149769, −9.929608732158537628102839128171, −8.272864725868494467391013401880, −7.57849576713423574970466174922, −5.77313484074140804684990930249, −4.21624195450614836228712778887, −2.71175328366351753105260510423, −0.60299120426095129596649922322,
2.07568525085981082178266969251, 4.74203248781539095572739966582, 5.33351224649979611190821190633, 7.07685724392759830260844392764, 8.214515329238273234440850507935, 8.924264269346698547870547359014, 10.37017991438765200337213060560, 11.49937097666952748167497350257, 12.52053127123546729443856330192, 13.95059152564324384444796271436