Properties

Label 2-110-11.5-c3-0-10
Degree $2$
Conductor $110$
Sign $-0.746 + 0.665i$
Analytic cond. $6.49021$
Root an. cond. $2.54758$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.618 − 1.90i)2-s + (−0.396 − 0.287i)3-s + (−3.23 + 2.35i)4-s + (−1.54 + 4.75i)5-s + (−0.302 + 0.931i)6-s + (19.1 − 13.9i)7-s + (6.47 + 4.70i)8-s + (−8.26 − 25.4i)9-s + 10.0·10-s + (−35.9 − 6.11i)11-s + 1.95·12-s + (−22.0 − 67.9i)13-s + (−38.3 − 27.8i)14-s + (1.98 − 1.43i)15-s + (4.94 − 15.2i)16-s + (−8.55 + 26.3i)17-s + ⋯
L(s)  = 1  + (−0.218 − 0.672i)2-s + (−0.0762 − 0.0554i)3-s + (−0.404 + 0.293i)4-s + (−0.138 + 0.425i)5-s + (−0.0206 + 0.0634i)6-s + (1.03 − 0.751i)7-s + (0.286 + 0.207i)8-s + (−0.306 − 0.942i)9-s + 0.316·10-s + (−0.985 − 0.167i)11-s + 0.0471·12-s + (−0.470 − 1.44i)13-s + (−0.731 − 0.531i)14-s + (0.0341 − 0.0247i)15-s + (0.0772 − 0.237i)16-s + (−0.122 + 0.375i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $-0.746 + 0.665i$
Analytic conductor: \(6.49021\)
Root analytic conductor: \(2.54758\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (71, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :3/2),\ -0.746 + 0.665i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.362357 - 0.950530i\)
\(L(\frac12)\) \(\approx\) \(0.362357 - 0.950530i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.618 + 1.90i)T \)
5 \( 1 + (1.54 - 4.75i)T \)
11 \( 1 + (35.9 + 6.11i)T \)
good3 \( 1 + (0.396 + 0.287i)T + (8.34 + 25.6i)T^{2} \)
7 \( 1 + (-19.1 + 13.9i)T + (105. - 326. i)T^{2} \)
13 \( 1 + (22.0 + 67.9i)T + (-1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (8.55 - 26.3i)T + (-3.97e3 - 2.88e3i)T^{2} \)
19 \( 1 + (-3.30 - 2.39i)T + (2.11e3 + 6.52e3i)T^{2} \)
23 \( 1 + 74.7T + 1.21e4T^{2} \)
29 \( 1 + (-229. + 166. i)T + (7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (92.0 + 283. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (89.3 - 64.9i)T + (1.56e4 - 4.81e4i)T^{2} \)
41 \( 1 + (-151. - 110. i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 - 131.T + 7.95e4T^{2} \)
47 \( 1 + (-97.8 - 71.0i)T + (3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (-165. - 509. i)T + (-1.20e5 + 8.75e4i)T^{2} \)
59 \( 1 + (-421. + 305. i)T + (6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (216. - 665. i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 - 710.T + 3.00e5T^{2} \)
71 \( 1 + (-62.2 + 191. i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (458. - 332. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (349. + 1.07e3i)T + (-3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (444. - 1.36e3i)T + (-4.62e5 - 3.36e5i)T^{2} \)
89 \( 1 - 575.T + 7.04e5T^{2} \)
97 \( 1 + (255. + 785. i)T + (-7.38e5 + 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64165922808025300088317993018, −11.59387261217012300432387729109, −10.67755385066721554271095149769, −9.929608732158537628102839128171, −8.272864725868494467391013401880, −7.57849576713423574970466174922, −5.77313484074140804684990930249, −4.21624195450614836228712778887, −2.71175328366351753105260510423, −0.60299120426095129596649922322, 2.07568525085981082178266969251, 4.74203248781539095572739966582, 5.33351224649979611190821190633, 7.07685724392759830260844392764, 8.214515329238273234440850507935, 8.924264269346698547870547359014, 10.37017991438765200337213060560, 11.49937097666952748167497350257, 12.52053127123546729443856330192, 13.95059152564324384444796271436

Graph of the $Z$-function along the critical line