L(s) = 1 | + (−0.618 − 1.90i)2-s + (5.32 + 3.86i)3-s + (−3.23 + 2.35i)4-s + (−1.54 + 4.75i)5-s + (4.06 − 12.5i)6-s + (7.43 − 5.40i)7-s + (6.47 + 4.70i)8-s + (5.04 + 15.5i)9-s + 10.0·10-s + (32.2 + 16.9i)11-s − 26.3·12-s + (24.6 + 75.7i)13-s + (−14.8 − 10.8i)14-s + (−26.6 + 19.3i)15-s + (4.94 − 15.2i)16-s + (−5.70 + 17.5i)17-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (1.02 + 0.744i)3-s + (−0.404 + 0.293i)4-s + (−0.138 + 0.425i)5-s + (0.276 − 0.851i)6-s + (0.401 − 0.291i)7-s + (0.286 + 0.207i)8-s + (0.186 + 0.575i)9-s + 0.316·10-s + (0.885 + 0.465i)11-s − 0.633·12-s + (0.525 + 1.61i)13-s + (−0.284 − 0.206i)14-s + (−0.458 + 0.333i)15-s + (0.0772 − 0.237i)16-s + (−0.0813 + 0.250i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.915−0.401i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(0.915−0.401i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.915−0.401i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), 0.915−0.401i)
|
Particular Values
L(2) |
≈ |
1.90944+0.399816i |
L(21) |
≈ |
1.90944+0.399816i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.618+1.90i)T |
| 5 | 1+(1.54−4.75i)T |
| 11 | 1+(−32.2−16.9i)T |
good | 3 | 1+(−5.32−3.86i)T+(8.34+25.6i)T2 |
| 7 | 1+(−7.43+5.40i)T+(105.−326.i)T2 |
| 13 | 1+(−24.6−75.7i)T+(−1.77e3+1.29e3i)T2 |
| 17 | 1+(5.70−17.5i)T+(−3.97e3−2.88e3i)T2 |
| 19 | 1+(−12.9−9.41i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1−7.44T+1.21e4T2 |
| 29 | 1+(−44.2+32.1i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(55.5+170.i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(−133.+96.7i)T+(1.56e4−4.81e4i)T2 |
| 41 | 1+(179.+130.i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1+115.T+7.95e4T2 |
| 47 | 1+(380.+276.i)T+(3.20e4+9.87e4i)T2 |
| 53 | 1+(224.+691.i)T+(−1.20e5+8.75e4i)T2 |
| 59 | 1+(114.−83.1i)T+(6.34e4−1.95e5i)T2 |
| 61 | 1+(191.−590.i)T+(−1.83e5−1.33e5i)T2 |
| 67 | 1−783.T+3.00e5T2 |
| 71 | 1+(99.8−307.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(−806.+586.i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(−54.1−166.i)T+(−3.98e5+2.89e5i)T2 |
| 83 | 1+(−214.+659.i)T+(−4.62e5−3.36e5i)T2 |
| 89 | 1+101.T+7.04e5T2 |
| 97 | 1+(−16.1−49.6i)T+(−7.38e5+5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.47881450648250839791448385984, −11.91374802976151544669028208453, −11.13323259048964494915362248490, −9.863337218339843916041457557804, −9.178836339133585218344912050477, −8.167067312005438211390957464408, −6.70706727599015435209827724511, −4.38498764097170279568610455069, −3.61806282192386613066974159009, −1.93252453882285229670585470730,
1.23185427506815647531564093111, 3.23650743115899426341393550059, 5.15462465326309848761268680779, 6.57012918759035079529729605687, 7.946636753421089880194442560691, 8.392619254499830148854726436639, 9.416407151085666820401739923210, 10.99196196346646940016724184708, 12.42705799078598520418494248061, 13.33156520281787727653218881462