L(s) = 1 | + (−0.891 + 0.453i)2-s + (2.03 + 0.322i)3-s + (0.587 − 0.809i)4-s + (0.667 − 2.13i)5-s + (−1.95 + 0.636i)6-s + (−0.0611 − 0.386i)7-s + (−0.156 + 0.987i)8-s + (1.18 + 0.384i)9-s + (0.373 + 2.20i)10-s + (−3.24 + 0.696i)11-s + (1.45 − 1.45i)12-s + (2.60 + 5.11i)13-s + (0.229 + 0.316i)14-s + (2.04 − 4.12i)15-s + (−0.309 − 0.951i)16-s + (0.224 − 0.440i)17-s + ⋯ |
L(s) = 1 | + (−0.630 + 0.321i)2-s + (1.17 + 0.186i)3-s + (0.293 − 0.404i)4-s + (0.298 − 0.954i)5-s + (−0.799 + 0.259i)6-s + (−0.0231 − 0.145i)7-s + (−0.0553 + 0.349i)8-s + (0.394 + 0.128i)9-s + (0.118 + 0.697i)10-s + (−0.977 + 0.210i)11-s + (0.420 − 0.420i)12-s + (0.723 + 1.41i)13-s + (0.0614 + 0.0845i)14-s + (0.528 − 1.06i)15-s + (−0.0772 − 0.237i)16-s + (0.0544 − 0.106i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.117i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.117i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07938 + 0.0638108i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07938 + 0.0638108i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.891 - 0.453i)T \) |
| 5 | \( 1 + (-0.667 + 2.13i)T \) |
| 11 | \( 1 + (3.24 - 0.696i)T \) |
good | 3 | \( 1 + (-2.03 - 0.322i)T + (2.85 + 0.927i)T^{2} \) |
| 7 | \( 1 + (0.0611 + 0.386i)T + (-6.65 + 2.16i)T^{2} \) |
| 13 | \( 1 + (-2.60 - 5.11i)T + (-7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (-0.224 + 0.440i)T + (-9.99 - 13.7i)T^{2} \) |
| 19 | \( 1 + (2.61 - 1.90i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.05 - 1.05i)T + 23iT^{2} \) |
| 29 | \( 1 + (6.85 + 4.97i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.58 - 4.87i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-9.20 + 1.45i)T + (35.1 - 11.4i)T^{2} \) |
| 41 | \( 1 + (3.50 + 4.82i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-3.86 + 3.86i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.596 - 3.76i)T + (-44.6 - 14.5i)T^{2} \) |
| 53 | \( 1 + (-1.62 + 0.830i)T + (31.1 - 42.8i)T^{2} \) |
| 59 | \( 1 + (-1.77 + 2.44i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-7.86 + 2.55i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (10.6 - 10.6i)T - 67iT^{2} \) |
| 71 | \( 1 + (-3.83 - 11.8i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (11.9 - 1.89i)T + (69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (-2.96 + 9.12i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-5.29 - 2.69i)T + (48.7 + 67.1i)T^{2} \) |
| 89 | \( 1 + 9.83iT - 89T^{2} \) |
| 97 | \( 1 + (2.44 + 4.79i)T + (-57.0 + 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.77437361568574045183165830826, −12.97135781593774928720994717738, −11.48610002713363460454386284923, −10.07639961443334041229606356466, −9.115742336043115423668713200075, −8.523228528158739901560571248815, −7.43960283378527250784254966547, −5.78051010331515263249155063046, −4.12617195148352063365904496021, −2.08148055757081211289421928843,
2.44260292204020476882042747305, 3.34113885284566105267708371976, 5.88026588475879062335899655039, 7.48114539418584403252172092549, 8.205262721562147466666551457282, 9.303538530284405104591345527125, 10.47987068475535631605964019492, 11.15538681681899291569113915461, 12.97716872138964401332882186835, 13.43952276906345550151654621783