L(s) = 1 | + (−0.891 + 0.453i)2-s + (2.03 + 0.322i)3-s + (0.587 − 0.809i)4-s + (0.667 − 2.13i)5-s + (−1.95 + 0.636i)6-s + (−0.0611 − 0.386i)7-s + (−0.156 + 0.987i)8-s + (1.18 + 0.384i)9-s + (0.373 + 2.20i)10-s + (−3.24 + 0.696i)11-s + (1.45 − 1.45i)12-s + (2.60 + 5.11i)13-s + (0.229 + 0.316i)14-s + (2.04 − 4.12i)15-s + (−0.309 − 0.951i)16-s + (0.224 − 0.440i)17-s + ⋯ |
L(s) = 1 | + (−0.630 + 0.321i)2-s + (1.17 + 0.186i)3-s + (0.293 − 0.404i)4-s + (0.298 − 0.954i)5-s + (−0.799 + 0.259i)6-s + (−0.0231 − 0.145i)7-s + (−0.0553 + 0.349i)8-s + (0.394 + 0.128i)9-s + (0.118 + 0.697i)10-s + (−0.977 + 0.210i)11-s + (0.420 − 0.420i)12-s + (0.723 + 1.41i)13-s + (0.0614 + 0.0845i)14-s + (0.528 − 1.06i)15-s + (−0.0772 − 0.237i)16-s + (0.0544 − 0.106i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.993−0.117i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(0.993−0.117i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.993−0.117i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), 0.993−0.117i)
|
Particular Values
L(1) |
≈ |
1.07938+0.0638108i |
L(21) |
≈ |
1.07938+0.0638108i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.891−0.453i)T |
| 5 | 1+(−0.667+2.13i)T |
| 11 | 1+(3.24−0.696i)T |
good | 3 | 1+(−2.03−0.322i)T+(2.85+0.927i)T2 |
| 7 | 1+(0.0611+0.386i)T+(−6.65+2.16i)T2 |
| 13 | 1+(−2.60−5.11i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−0.224+0.440i)T+(−9.99−13.7i)T2 |
| 19 | 1+(2.61−1.90i)T+(5.87−18.0i)T2 |
| 23 | 1+(−1.05−1.05i)T+23iT2 |
| 29 | 1+(6.85+4.97i)T+(8.96+27.5i)T2 |
| 31 | 1+(1.58−4.87i)T+(−25.0−18.2i)T2 |
| 37 | 1+(−9.20+1.45i)T+(35.1−11.4i)T2 |
| 41 | 1+(3.50+4.82i)T+(−12.6+38.9i)T2 |
| 43 | 1+(−3.86+3.86i)T−43iT2 |
| 47 | 1+(0.596−3.76i)T+(−44.6−14.5i)T2 |
| 53 | 1+(−1.62+0.830i)T+(31.1−42.8i)T2 |
| 59 | 1+(−1.77+2.44i)T+(−18.2−56.1i)T2 |
| 61 | 1+(−7.86+2.55i)T+(49.3−35.8i)T2 |
| 67 | 1+(10.6−10.6i)T−67iT2 |
| 71 | 1+(−3.83−11.8i)T+(−57.4+41.7i)T2 |
| 73 | 1+(11.9−1.89i)T+(69.4−22.5i)T2 |
| 79 | 1+(−2.96+9.12i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−5.29−2.69i)T+(48.7+67.1i)T2 |
| 89 | 1+9.83iT−89T2 |
| 97 | 1+(2.44+4.79i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.77437361568574045183165830826, −12.97135781593774928720994717738, −11.48610002713363460454386284923, −10.07639961443334041229606356466, −9.115742336043115423668713200075, −8.523228528158739901560571248815, −7.43960283378527250784254966547, −5.78051010331515263249155063046, −4.12617195148352063365904496021, −2.08148055757081211289421928843,
2.44260292204020476882042747305, 3.34113885284566105267708371976, 5.88026588475879062335899655039, 7.48114539418584403252172092549, 8.205262721562147466666551457282, 9.303538530284405104591345527125, 10.47987068475535631605964019492, 11.15538681681899291569113915461, 12.97716872138964401332882186835, 13.43952276906345550151654621783