Properties

Label 2-110-55.17-c1-0-3
Degree 22
Conductor 110110
Sign 0.993+0.117i0.993 + 0.117i
Analytic cond. 0.8783540.878354
Root an. cond. 0.9372050.937205
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.891 − 0.453i)2-s + (2.03 − 0.322i)3-s + (0.587 + 0.809i)4-s + (0.667 + 2.13i)5-s + (−1.95 − 0.636i)6-s + (−0.0611 + 0.386i)7-s + (−0.156 − 0.987i)8-s + (1.18 − 0.384i)9-s + (0.373 − 2.20i)10-s + (−3.24 − 0.696i)11-s + (1.45 + 1.45i)12-s + (2.60 − 5.11i)13-s + (0.229 − 0.316i)14-s + (2.04 + 4.12i)15-s + (−0.309 + 0.951i)16-s + (0.224 + 0.440i)17-s + ⋯
L(s)  = 1  + (−0.630 − 0.321i)2-s + (1.17 − 0.186i)3-s + (0.293 + 0.404i)4-s + (0.298 + 0.954i)5-s + (−0.799 − 0.259i)6-s + (−0.0231 + 0.145i)7-s + (−0.0553 − 0.349i)8-s + (0.394 − 0.128i)9-s + (0.118 − 0.697i)10-s + (−0.977 − 0.210i)11-s + (0.420 + 0.420i)12-s + (0.723 − 1.41i)13-s + (0.0614 − 0.0845i)14-s + (0.528 + 1.06i)15-s + (−0.0772 + 0.237i)16-s + (0.0544 + 0.106i)17-s + ⋯

Functional equation

Λ(s)=(110s/2ΓC(s)L(s)=((0.993+0.117i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.117i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(110s/2ΓC(s+1/2)L(s)=((0.993+0.117i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.117i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 110110    =    25112 \cdot 5 \cdot 11
Sign: 0.993+0.117i0.993 + 0.117i
Analytic conductor: 0.8783540.878354
Root analytic conductor: 0.9372050.937205
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ110(17,)\chi_{110} (17, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 110, ( :1/2), 0.993+0.117i)(2,\ 110,\ (\ :1/2),\ 0.993 + 0.117i)

Particular Values

L(1)L(1) \approx 1.079380.0638108i1.07938 - 0.0638108i
L(12)L(\frac12) \approx 1.079380.0638108i1.07938 - 0.0638108i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.891+0.453i)T 1 + (0.891 + 0.453i)T
5 1+(0.6672.13i)T 1 + (-0.667 - 2.13i)T
11 1+(3.24+0.696i)T 1 + (3.24 + 0.696i)T
good3 1+(2.03+0.322i)T+(2.850.927i)T2 1 + (-2.03 + 0.322i)T + (2.85 - 0.927i)T^{2}
7 1+(0.06110.386i)T+(6.652.16i)T2 1 + (0.0611 - 0.386i)T + (-6.65 - 2.16i)T^{2}
13 1+(2.60+5.11i)T+(7.6410.5i)T2 1 + (-2.60 + 5.11i)T + (-7.64 - 10.5i)T^{2}
17 1+(0.2240.440i)T+(9.99+13.7i)T2 1 + (-0.224 - 0.440i)T + (-9.99 + 13.7i)T^{2}
19 1+(2.61+1.90i)T+(5.87+18.0i)T2 1 + (2.61 + 1.90i)T + (5.87 + 18.0i)T^{2}
23 1+(1.05+1.05i)T23iT2 1 + (-1.05 + 1.05i)T - 23iT^{2}
29 1+(6.854.97i)T+(8.9627.5i)T2 1 + (6.85 - 4.97i)T + (8.96 - 27.5i)T^{2}
31 1+(1.58+4.87i)T+(25.0+18.2i)T2 1 + (1.58 + 4.87i)T + (-25.0 + 18.2i)T^{2}
37 1+(9.201.45i)T+(35.1+11.4i)T2 1 + (-9.20 - 1.45i)T + (35.1 + 11.4i)T^{2}
41 1+(3.504.82i)T+(12.638.9i)T2 1 + (3.50 - 4.82i)T + (-12.6 - 38.9i)T^{2}
43 1+(3.863.86i)T+43iT2 1 + (-3.86 - 3.86i)T + 43iT^{2}
47 1+(0.596+3.76i)T+(44.6+14.5i)T2 1 + (0.596 + 3.76i)T + (-44.6 + 14.5i)T^{2}
53 1+(1.620.830i)T+(31.1+42.8i)T2 1 + (-1.62 - 0.830i)T + (31.1 + 42.8i)T^{2}
59 1+(1.772.44i)T+(18.2+56.1i)T2 1 + (-1.77 - 2.44i)T + (-18.2 + 56.1i)T^{2}
61 1+(7.862.55i)T+(49.3+35.8i)T2 1 + (-7.86 - 2.55i)T + (49.3 + 35.8i)T^{2}
67 1+(10.6+10.6i)T+67iT2 1 + (10.6 + 10.6i)T + 67iT^{2}
71 1+(3.83+11.8i)T+(57.441.7i)T2 1 + (-3.83 + 11.8i)T + (-57.4 - 41.7i)T^{2}
73 1+(11.9+1.89i)T+(69.4+22.5i)T2 1 + (11.9 + 1.89i)T + (69.4 + 22.5i)T^{2}
79 1+(2.969.12i)T+(63.9+46.4i)T2 1 + (-2.96 - 9.12i)T + (-63.9 + 46.4i)T^{2}
83 1+(5.29+2.69i)T+(48.767.1i)T2 1 + (-5.29 + 2.69i)T + (48.7 - 67.1i)T^{2}
89 19.83iT89T2 1 - 9.83iT - 89T^{2}
97 1+(2.444.79i)T+(57.078.4i)T2 1 + (2.44 - 4.79i)T + (-57.0 - 78.4i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.43952276906345550151654621783, −12.97716872138964401332882186835, −11.15538681681899291569113915461, −10.47987068475535631605964019492, −9.303538530284405104591345527125, −8.205262721562147466666551457282, −7.48114539418584403252172092549, −5.88026588475879062335899655039, −3.34113885284566105267708371976, −2.44260292204020476882042747305, 2.08148055757081211289421928843, 4.12617195148352063365904496021, 5.78051010331515263249155063046, 7.43960283378527250784254966547, 8.523228528158739901560571248815, 9.115742336043115423668713200075, 10.07639961443334041229606356466, 11.48610002713363460454386284923, 12.97135781593774928720994717738, 13.77437361568574045183165830826

Graph of the ZZ-function along the critical line