Properties

Label 2-110-55.17-c1-0-3
Degree $2$
Conductor $110$
Sign $0.993 + 0.117i$
Analytic cond. $0.878354$
Root an. cond. $0.937205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.891 − 0.453i)2-s + (2.03 − 0.322i)3-s + (0.587 + 0.809i)4-s + (0.667 + 2.13i)5-s + (−1.95 − 0.636i)6-s + (−0.0611 + 0.386i)7-s + (−0.156 − 0.987i)8-s + (1.18 − 0.384i)9-s + (0.373 − 2.20i)10-s + (−3.24 − 0.696i)11-s + (1.45 + 1.45i)12-s + (2.60 − 5.11i)13-s + (0.229 − 0.316i)14-s + (2.04 + 4.12i)15-s + (−0.309 + 0.951i)16-s + (0.224 + 0.440i)17-s + ⋯
L(s)  = 1  + (−0.630 − 0.321i)2-s + (1.17 − 0.186i)3-s + (0.293 + 0.404i)4-s + (0.298 + 0.954i)5-s + (−0.799 − 0.259i)6-s + (−0.0231 + 0.145i)7-s + (−0.0553 − 0.349i)8-s + (0.394 − 0.128i)9-s + (0.118 − 0.697i)10-s + (−0.977 − 0.210i)11-s + (0.420 + 0.420i)12-s + (0.723 − 1.41i)13-s + (0.0614 − 0.0845i)14-s + (0.528 + 1.06i)15-s + (−0.0772 + 0.237i)16-s + (0.0544 + 0.106i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.117i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.117i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $0.993 + 0.117i$
Analytic conductor: \(0.878354\)
Root analytic conductor: \(0.937205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :1/2),\ 0.993 + 0.117i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.07938 - 0.0638108i\)
\(L(\frac12)\) \(\approx\) \(1.07938 - 0.0638108i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.891 + 0.453i)T \)
5 \( 1 + (-0.667 - 2.13i)T \)
11 \( 1 + (3.24 + 0.696i)T \)
good3 \( 1 + (-2.03 + 0.322i)T + (2.85 - 0.927i)T^{2} \)
7 \( 1 + (0.0611 - 0.386i)T + (-6.65 - 2.16i)T^{2} \)
13 \( 1 + (-2.60 + 5.11i)T + (-7.64 - 10.5i)T^{2} \)
17 \( 1 + (-0.224 - 0.440i)T + (-9.99 + 13.7i)T^{2} \)
19 \( 1 + (2.61 + 1.90i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-1.05 + 1.05i)T - 23iT^{2} \)
29 \( 1 + (6.85 - 4.97i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (1.58 + 4.87i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (-9.20 - 1.45i)T + (35.1 + 11.4i)T^{2} \)
41 \( 1 + (3.50 - 4.82i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 + (-3.86 - 3.86i)T + 43iT^{2} \)
47 \( 1 + (0.596 + 3.76i)T + (-44.6 + 14.5i)T^{2} \)
53 \( 1 + (-1.62 - 0.830i)T + (31.1 + 42.8i)T^{2} \)
59 \( 1 + (-1.77 - 2.44i)T + (-18.2 + 56.1i)T^{2} \)
61 \( 1 + (-7.86 - 2.55i)T + (49.3 + 35.8i)T^{2} \)
67 \( 1 + (10.6 + 10.6i)T + 67iT^{2} \)
71 \( 1 + (-3.83 + 11.8i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + (11.9 + 1.89i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (-2.96 - 9.12i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-5.29 + 2.69i)T + (48.7 - 67.1i)T^{2} \)
89 \( 1 - 9.83iT - 89T^{2} \)
97 \( 1 + (2.44 - 4.79i)T + (-57.0 - 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43952276906345550151654621783, −12.97716872138964401332882186835, −11.15538681681899291569113915461, −10.47987068475535631605964019492, −9.303538530284405104591345527125, −8.205262721562147466666551457282, −7.48114539418584403252172092549, −5.88026588475879062335899655039, −3.34113885284566105267708371976, −2.44260292204020476882042747305, 2.08148055757081211289421928843, 4.12617195148352063365904496021, 5.78051010331515263249155063046, 7.43960283378527250784254966547, 8.523228528158739901560571248815, 9.115742336043115423668713200075, 10.07639961443334041229606356466, 11.48610002713363460454386284923, 12.97135781593774928720994717738, 13.77437361568574045183165830826

Graph of the $Z$-function along the critical line