L(s) = 1 | + (−0.891 − 0.453i)2-s + (2.03 − 0.322i)3-s + (0.587 + 0.809i)4-s + (0.667 + 2.13i)5-s + (−1.95 − 0.636i)6-s + (−0.0611 + 0.386i)7-s + (−0.156 − 0.987i)8-s + (1.18 − 0.384i)9-s + (0.373 − 2.20i)10-s + (−3.24 − 0.696i)11-s + (1.45 + 1.45i)12-s + (2.60 − 5.11i)13-s + (0.229 − 0.316i)14-s + (2.04 + 4.12i)15-s + (−0.309 + 0.951i)16-s + (0.224 + 0.440i)17-s + ⋯ |
L(s) = 1 | + (−0.630 − 0.321i)2-s + (1.17 − 0.186i)3-s + (0.293 + 0.404i)4-s + (0.298 + 0.954i)5-s + (−0.799 − 0.259i)6-s + (−0.0231 + 0.145i)7-s + (−0.0553 − 0.349i)8-s + (0.394 − 0.128i)9-s + (0.118 − 0.697i)10-s + (−0.977 − 0.210i)11-s + (0.420 + 0.420i)12-s + (0.723 − 1.41i)13-s + (0.0614 − 0.0845i)14-s + (0.528 + 1.06i)15-s + (−0.0772 + 0.237i)16-s + (0.0544 + 0.106i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.993+0.117i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(0.993+0.117i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.993+0.117i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), 0.993+0.117i)
|
Particular Values
L(1) |
≈ |
1.07938−0.0638108i |
L(21) |
≈ |
1.07938−0.0638108i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.891+0.453i)T |
| 5 | 1+(−0.667−2.13i)T |
| 11 | 1+(3.24+0.696i)T |
good | 3 | 1+(−2.03+0.322i)T+(2.85−0.927i)T2 |
| 7 | 1+(0.0611−0.386i)T+(−6.65−2.16i)T2 |
| 13 | 1+(−2.60+5.11i)T+(−7.64−10.5i)T2 |
| 17 | 1+(−0.224−0.440i)T+(−9.99+13.7i)T2 |
| 19 | 1+(2.61+1.90i)T+(5.87+18.0i)T2 |
| 23 | 1+(−1.05+1.05i)T−23iT2 |
| 29 | 1+(6.85−4.97i)T+(8.96−27.5i)T2 |
| 31 | 1+(1.58+4.87i)T+(−25.0+18.2i)T2 |
| 37 | 1+(−9.20−1.45i)T+(35.1+11.4i)T2 |
| 41 | 1+(3.50−4.82i)T+(−12.6−38.9i)T2 |
| 43 | 1+(−3.86−3.86i)T+43iT2 |
| 47 | 1+(0.596+3.76i)T+(−44.6+14.5i)T2 |
| 53 | 1+(−1.62−0.830i)T+(31.1+42.8i)T2 |
| 59 | 1+(−1.77−2.44i)T+(−18.2+56.1i)T2 |
| 61 | 1+(−7.86−2.55i)T+(49.3+35.8i)T2 |
| 67 | 1+(10.6+10.6i)T+67iT2 |
| 71 | 1+(−3.83+11.8i)T+(−57.4−41.7i)T2 |
| 73 | 1+(11.9+1.89i)T+(69.4+22.5i)T2 |
| 79 | 1+(−2.96−9.12i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−5.29+2.69i)T+(48.7−67.1i)T2 |
| 89 | 1−9.83iT−89T2 |
| 97 | 1+(2.44−4.79i)T+(−57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.43952276906345550151654621783, −12.97716872138964401332882186835, −11.15538681681899291569113915461, −10.47987068475535631605964019492, −9.303538530284405104591345527125, −8.205262721562147466666551457282, −7.48114539418584403252172092549, −5.88026588475879062335899655039, −3.34113885284566105267708371976, −2.44260292204020476882042747305,
2.08148055757081211289421928843, 4.12617195148352063365904496021, 5.78051010331515263249155063046, 7.43960283378527250784254966547, 8.523228528158739901560571248815, 9.115742336043115423668713200075, 10.07639961443334041229606356466, 11.48610002713363460454386284923, 12.97135781593774928720994717738, 13.77437361568574045183165830826