L(s) = 1 | − i·3-s + 11-s − i·23-s − i·27-s − 31-s − i·33-s + i·37-s − 2i·47-s − 49-s + 2i·53-s + 59-s + i·67-s − 69-s − 71-s − 81-s + ⋯ |
L(s) = 1 | − i·3-s + 11-s − i·23-s − i·27-s − 31-s − i·33-s + i·37-s − 2i·47-s − 49-s + 2i·53-s + 59-s + i·67-s − 69-s − 71-s − 81-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Λ(s)=(=(1100s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
0.548971 |
Root analytic conductor: |
0.740926 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :0), 0.447+0.894i)
|
Particular Values
L(21) |
≈ |
1.111436874 |
L(21) |
≈ |
1.111436874 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−T |
good | 3 | 1+iT−T2 |
| 7 | 1+T2 |
| 13 | 1+T2 |
| 17 | 1+T2 |
| 19 | 1−T2 |
| 23 | 1+iT−T2 |
| 29 | 1−T2 |
| 31 | 1+T+T2 |
| 37 | 1−iT−T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1+2iT−T2 |
| 53 | 1−2iT−T2 |
| 59 | 1−T+T2 |
| 61 | 1−T2 |
| 67 | 1−iT−T2 |
| 71 | 1+T+T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1−T+T2 |
| 97 | 1−iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.894599890739621316269771540695, −8.955274156714402372889349871041, −8.229645119295682048600639656940, −7.25894910792280318490397713639, −6.69872116812168946447000357241, −5.91626090425666631380443876080, −4.68089616261762562149493606104, −3.67034195666631910125126063237, −2.31505650139177241299580054997, −1.21746501681868053595962199274,
1.67903571971531424131634441327, 3.32439945773914004786896152621, 4.02002329170887158538414860367, 4.91740983068476997795306517116, 5.84767285656271670613683837042, 6.86796836654003673273296408697, 7.72249954366541900864644584735, 8.867059245755255398454128152744, 9.446121537586323586289723938045, 10.03140269962709176053957188551