L(s) = 1 | + (0.866 − 1.5i)2-s + (−0.965 − 1.67i)3-s + (−1 − 1.73i)4-s − 3.34·6-s − 1.73·8-s + (−1.36 + 2.36i)9-s + (−1.93 + 3.34i)12-s − 0.517·13-s + (−0.5 + 0.866i)16-s + (2.36 + 4.09i)18-s + (0.5 − 0.866i)23-s + (1.67 + 2.89i)24-s + (−0.5 − 0.866i)25-s + (−0.448 + 0.776i)26-s + 3.34·27-s + ⋯ |
L(s) = 1 | + (0.866 − 1.5i)2-s + (−0.965 − 1.67i)3-s + (−1 − 1.73i)4-s − 3.34·6-s − 1.73·8-s + (−1.36 + 2.36i)9-s + (−1.93 + 3.34i)12-s − 0.517·13-s + (−0.5 + 0.866i)16-s + (2.36 + 4.09i)18-s + (0.5 − 0.866i)23-s + (1.67 + 2.89i)24-s + (−0.5 − 0.866i)25-s + (−0.448 + 0.776i)26-s + 3.34·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9285298370\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9285298370\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 3 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 0.517T + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.258 + 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - 0.517T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.894542718334242637906424253592, −8.629896176126406306329784198465, −7.57646521948628122433590953866, −6.76155701399814990455880096243, −5.77336175884207078222558070825, −5.19740918896636854673061045664, −4.11293076808370701215598876342, −2.60779010794368938140809883660, −1.99753348293486890208556830139, −0.71562465124332083766634630029,
3.33043958185879804505894440870, 4.01552716753520345773326983628, 4.90563425908324048444096631265, 5.42652738038804516429644147245, 6.08111969176445465990155292687, 7.01217238402317070245955272983, 7.927188772760102547720021296851, 9.179752039445669890540708111957, 9.491105003187185479668862968098, 10.67172955098877993140118682886