L(s) = 1 | + (0.866 − 1.5i)2-s + (−0.965 − 1.67i)3-s + (−1 − 1.73i)4-s − 3.34·6-s − 1.73·8-s + (−1.36 + 2.36i)9-s + (−1.93 + 3.34i)12-s − 0.517·13-s + (−0.5 + 0.866i)16-s + (2.36 + 4.09i)18-s + (0.5 − 0.866i)23-s + (1.67 + 2.89i)24-s + (−0.5 − 0.866i)25-s + (−0.448 + 0.776i)26-s + 3.34·27-s + ⋯ |
L(s) = 1 | + (0.866 − 1.5i)2-s + (−0.965 − 1.67i)3-s + (−1 − 1.73i)4-s − 3.34·6-s − 1.73·8-s + (−1.36 + 2.36i)9-s + (−1.93 + 3.34i)12-s − 0.517·13-s + (−0.5 + 0.866i)16-s + (2.36 + 4.09i)18-s + (0.5 − 0.866i)23-s + (1.67 + 2.89i)24-s + (−0.5 − 0.866i)25-s + (−0.448 + 0.776i)26-s + 3.34·27-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.198−0.980i)Λ(1−s)
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.198−0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
−0.198−0.980i
|
Analytic conductor: |
0.562446 |
Root analytic conductor: |
0.749964 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(275,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :0), −0.198−0.980i)
|
Particular Values
L(21) |
≈ |
0.9285298370 |
L(21) |
≈ |
0.9285298370 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+(−0.5+0.866i)T |
good | 2 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 3 | 1+(0.965+1.67i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+0.517T+T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.258+0.448i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−0.517T+T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.965+1.67i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T+T2 |
| 73 | 1+(−0.965−1.67i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.894542718334242637906424253592, −8.629896176126406306329784198465, −7.57646521948628122433590953866, −6.76155701399814990455880096243, −5.77336175884207078222558070825, −5.19740918896636854673061045664, −4.11293076808370701215598876342, −2.60779010794368938140809883660, −1.99753348293486890208556830139, −0.71562465124332083766634630029,
3.33043958185879804505894440870, 4.01552716753520345773326983628, 4.90563425908324048444096631265, 5.42652738038804516429644147245, 6.08111969176445465990155292687, 7.01217238402317070245955272983, 7.927188772760102547720021296851, 9.179752039445669890540708111957, 9.491105003187185479668862968098, 10.67172955098877993140118682886