L(s) = 1 | + (−1.21 + 1.16i)2-s + (0.0871 − 1.82i)4-s + (0.915 + 1.05i)8-s + (−0.928 − 0.371i)9-s + (−1.04 + 1.09i)11-s + (−0.518 − 0.0495i)16-s + (1.56 − 0.625i)18-s − 2.54i·22-s + (−0.786 − 0.618i)23-s + (0.235 + 0.971i)25-s + (−1.61 + 1.03i)29-s + (−0.409 + 0.322i)32-s + (−0.760 + 1.66i)36-s + (−0.676 + 1.68i)37-s + (−1.49 − 1.29i)43-s + (1.90 + 2.00i)44-s + ⋯ |
L(s) = 1 | + (−1.21 + 1.16i)2-s + (0.0871 − 1.82i)4-s + (0.915 + 1.05i)8-s + (−0.928 − 0.371i)9-s + (−1.04 + 1.09i)11-s + (−0.518 − 0.0495i)16-s + (1.56 − 0.625i)18-s − 2.54i·22-s + (−0.786 − 0.618i)23-s + (0.235 + 0.971i)25-s + (−1.61 + 1.03i)29-s + (−0.409 + 0.322i)32-s + (−0.760 + 1.66i)36-s + (−0.676 + 1.68i)37-s + (−1.49 − 1.29i)43-s + (1.90 + 2.00i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.822 + 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.822 + 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1588061068\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1588061068\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 + (0.786 + 0.618i)T \) |
good | 2 | \( 1 + (1.21 - 1.16i)T + (0.0475 - 0.998i)T^{2} \) |
| 3 | \( 1 + (0.928 + 0.371i)T^{2} \) |
| 5 | \( 1 + (-0.235 - 0.971i)T^{2} \) |
| 11 | \( 1 + (1.04 - 1.09i)T + (-0.0475 - 0.998i)T^{2} \) |
| 13 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 17 | \( 1 + (-0.580 - 0.814i)T^{2} \) |
| 19 | \( 1 + (-0.580 + 0.814i)T^{2} \) |
| 29 | \( 1 + (1.61 - 1.03i)T + (0.415 - 0.909i)T^{2} \) |
| 31 | \( 1 + (-0.786 - 0.618i)T^{2} \) |
| 37 | \( 1 + (0.676 - 1.68i)T + (-0.723 - 0.690i)T^{2} \) |
| 41 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 43 | \( 1 + (1.49 + 1.29i)T + (0.142 + 0.989i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.458 + 0.326i)T + (0.327 + 0.945i)T^{2} \) |
| 59 | \( 1 + (0.981 - 0.189i)T^{2} \) |
| 61 | \( 1 + (-0.928 + 0.371i)T^{2} \) |
| 67 | \( 1 + (1.05 - 0.254i)T + (0.888 - 0.458i)T^{2} \) |
| 71 | \( 1 + (-1.25 - 0.368i)T + (0.841 + 0.540i)T^{2} \) |
| 73 | \( 1 + (-0.995 - 0.0950i)T^{2} \) |
| 79 | \( 1 + (-0.458 + 0.326i)T + (0.327 - 0.945i)T^{2} \) |
| 83 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 89 | \( 1 + (0.786 - 0.618i)T^{2} \) |
| 97 | \( 1 + (0.959 + 0.281i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18417018517938085996202522987, −9.522588321694323021800064707849, −8.711170869440704057100578561463, −8.103400461057385336068831969167, −7.27468684056163305824569445437, −6.64876071869805201424143201850, −5.60839983286456532273980192027, −5.00055178782366461070820043954, −3.34283693728567222645028487550, −1.84554381322945571023078866229,
0.19768603830847262584629379663, 1.99346829424782372295086047028, 2.85584533417621086714048230576, 3.74790161829736804324663354684, 5.30840971467327790311750213119, 6.10602202932046425481141835455, 7.70013880340093872336832478224, 8.059073568092085010186376372206, 8.831199150534231085891276733211, 9.594318539804705250644773392227