L(s) = 1 | + (−1.21 + 1.16i)2-s + (0.0871 − 1.82i)4-s + (0.915 + 1.05i)8-s + (−0.928 − 0.371i)9-s + (−1.04 + 1.09i)11-s + (−0.518 − 0.0495i)16-s + (1.56 − 0.625i)18-s − 2.54i·22-s + (−0.786 − 0.618i)23-s + (0.235 + 0.971i)25-s + (−1.61 + 1.03i)29-s + (−0.409 + 0.322i)32-s + (−0.760 + 1.66i)36-s + (−0.676 + 1.68i)37-s + (−1.49 − 1.29i)43-s + (1.90 + 2.00i)44-s + ⋯ |
L(s) = 1 | + (−1.21 + 1.16i)2-s + (0.0871 − 1.82i)4-s + (0.915 + 1.05i)8-s + (−0.928 − 0.371i)9-s + (−1.04 + 1.09i)11-s + (−0.518 − 0.0495i)16-s + (1.56 − 0.625i)18-s − 2.54i·22-s + (−0.786 − 0.618i)23-s + (0.235 + 0.971i)25-s + (−1.61 + 1.03i)29-s + (−0.409 + 0.322i)32-s + (−0.760 + 1.66i)36-s + (−0.676 + 1.68i)37-s + (−1.49 − 1.29i)43-s + (1.90 + 2.00i)44-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.822+0.568i)Λ(1−s)
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.822+0.568i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
−0.822+0.568i
|
Analytic conductor: |
0.562446 |
Root analytic conductor: |
0.749964 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :0), −0.822+0.568i)
|
Particular Values
L(21) |
≈ |
0.1588061068 |
L(21) |
≈ |
0.1588061068 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+(0.786+0.618i)T |
good | 2 | 1+(1.21−1.16i)T+(0.0475−0.998i)T2 |
| 3 | 1+(0.928+0.371i)T2 |
| 5 | 1+(−0.235−0.971i)T2 |
| 11 | 1+(1.04−1.09i)T+(−0.0475−0.998i)T2 |
| 13 | 1+(−0.654−0.755i)T2 |
| 17 | 1+(−0.580−0.814i)T2 |
| 19 | 1+(−0.580+0.814i)T2 |
| 29 | 1+(1.61−1.03i)T+(0.415−0.909i)T2 |
| 31 | 1+(−0.786−0.618i)T2 |
| 37 | 1+(0.676−1.68i)T+(−0.723−0.690i)T2 |
| 41 | 1+(−0.959−0.281i)T2 |
| 43 | 1+(1.49+1.29i)T+(0.142+0.989i)T2 |
| 47 | 1+(−0.5−0.866i)T2 |
| 53 | 1+(0.458+0.326i)T+(0.327+0.945i)T2 |
| 59 | 1+(0.981−0.189i)T2 |
| 61 | 1+(−0.928+0.371i)T2 |
| 67 | 1+(1.05−0.254i)T+(0.888−0.458i)T2 |
| 71 | 1+(−1.25−0.368i)T+(0.841+0.540i)T2 |
| 73 | 1+(−0.995−0.0950i)T2 |
| 79 | 1+(−0.458+0.326i)T+(0.327−0.945i)T2 |
| 83 | 1+(0.959−0.281i)T2 |
| 89 | 1+(0.786−0.618i)T2 |
| 97 | 1+(0.959+0.281i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18417018517938085996202522987, −9.522588321694323021800064707849, −8.711170869440704057100578561463, −8.103400461057385336068831969167, −7.27468684056163305824569445437, −6.64876071869805201424143201850, −5.60839983286456532273980192027, −5.00055178782366461070820043954, −3.34283693728567222645028487550, −1.84554381322945571023078866229,
0.19768603830847262584629379663, 1.99346829424782372295086047028, 2.85584533417621086714048230576, 3.74790161829736804324663354684, 5.30840971467327790311750213119, 6.10602202932046425481141835455, 7.70013880340093872336832478224, 8.059073568092085010186376372206, 8.831199150534231085891276733211, 9.594318539804705250644773392227