Properties

Label 2-115-1.1-c1-0-0
Degree $2$
Conductor $115$
Sign $1$
Analytic cond. $0.918279$
Root an. cond. $0.958269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.69·2-s − 2.56·3-s + 0.868·4-s + 5-s + 4.33·6-s − 0.819·7-s + 1.91·8-s + 3.56·9-s − 1.69·10-s + 5.38·11-s − 2.22·12-s + 2.46·13-s + 1.38·14-s − 2.56·15-s − 4.98·16-s + 4.20·17-s − 6.03·18-s − 5.38·19-s + 0.868·20-s + 2.09·21-s − 9.12·22-s − 23-s − 4.91·24-s + 25-s − 4.17·26-s − 1.43·27-s − 0.710·28-s + ⋯
L(s)  = 1  − 1.19·2-s − 1.47·3-s + 0.434·4-s + 0.447·5-s + 1.77·6-s − 0.309·7-s + 0.677·8-s + 1.18·9-s − 0.535·10-s + 1.62·11-s − 0.641·12-s + 0.683·13-s + 0.370·14-s − 0.661·15-s − 1.24·16-s + 1.02·17-s − 1.42·18-s − 1.23·19-s + 0.194·20-s + 0.457·21-s − 1.94·22-s − 0.208·23-s − 1.00·24-s + 0.200·25-s − 0.818·26-s − 0.276·27-s − 0.134·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $1$
Analytic conductor: \(0.918279\)
Root analytic conductor: \(0.958269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4050847023\)
\(L(\frac12)\) \(\approx\) \(0.4050847023\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
23 \( 1 + T \)
good2 \( 1 + 1.69T + 2T^{2} \)
3 \( 1 + 2.56T + 3T^{2} \)
7 \( 1 + 0.819T + 7T^{2} \)
11 \( 1 - 5.38T + 11T^{2} \)
13 \( 1 - 2.46T + 13T^{2} \)
17 \( 1 - 4.20T + 17T^{2} \)
19 \( 1 + 5.38T + 19T^{2} \)
29 \( 1 - 2.35T + 29T^{2} \)
31 \( 1 - 6.66T + 31T^{2} \)
37 \( 1 - 7.42T + 37T^{2} \)
41 \( 1 - 5.64T + 41T^{2} \)
43 \( 1 + 1.90T + 43T^{2} \)
47 \( 1 + 9.33T + 47T^{2} \)
53 \( 1 - 13.8T + 53T^{2} \)
59 \( 1 - 5.27T + 59T^{2} \)
61 \( 1 + 8.51T + 61T^{2} \)
67 \( 1 - 4.10T + 67T^{2} \)
71 \( 1 + 11.7T + 71T^{2} \)
73 \( 1 + 10.4T + 73T^{2} \)
79 \( 1 - 13.7T + 79T^{2} \)
83 \( 1 - 3.32T + 83T^{2} \)
89 \( 1 + 3.58T + 89T^{2} \)
97 \( 1 + 9.02T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39044580534011118362598037612, −12.16639880919803416218905565180, −11.28230148328621455379942078355, −10.33482649441925781624541748506, −9.523336456815885102911488976996, −8.367300205792908111679029711403, −6.74179140659092668547956801214, −6.02785255257524048626341650016, −4.37006479462296182814920270020, −1.14760301018491783932398264453, 1.14760301018491783932398264453, 4.37006479462296182814920270020, 6.02785255257524048626341650016, 6.74179140659092668547956801214, 8.367300205792908111679029711403, 9.523336456815885102911488976996, 10.33482649441925781624541748506, 11.28230148328621455379942078355, 12.16639880919803416218905565180, 13.39044580534011118362598037612

Graph of the $Z$-function along the critical line