L(s) = 1 | − 1.69·2-s − 2.56·3-s + 0.868·4-s + 5-s + 4.33·6-s − 0.819·7-s + 1.91·8-s + 3.56·9-s − 1.69·10-s + 5.38·11-s − 2.22·12-s + 2.46·13-s + 1.38·14-s − 2.56·15-s − 4.98·16-s + 4.20·17-s − 6.03·18-s − 5.38·19-s + 0.868·20-s + 2.09·21-s − 9.12·22-s − 23-s − 4.91·24-s + 25-s − 4.17·26-s − 1.43·27-s − 0.710·28-s + ⋯ |
L(s) = 1 | − 1.19·2-s − 1.47·3-s + 0.434·4-s + 0.447·5-s + 1.77·6-s − 0.309·7-s + 0.677·8-s + 1.18·9-s − 0.535·10-s + 1.62·11-s − 0.641·12-s + 0.683·13-s + 0.370·14-s − 0.661·15-s − 1.24·16-s + 1.02·17-s − 1.42·18-s − 1.23·19-s + 0.194·20-s + 0.457·21-s − 1.94·22-s − 0.208·23-s − 1.00·24-s + 0.200·25-s − 0.818·26-s − 0.276·27-s − 0.134·28-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4050847023 |
L(21) |
≈ |
0.4050847023 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 23 | 1+T |
good | 2 | 1+1.69T+2T2 |
| 3 | 1+2.56T+3T2 |
| 7 | 1+0.819T+7T2 |
| 11 | 1−5.38T+11T2 |
| 13 | 1−2.46T+13T2 |
| 17 | 1−4.20T+17T2 |
| 19 | 1+5.38T+19T2 |
| 29 | 1−2.35T+29T2 |
| 31 | 1−6.66T+31T2 |
| 37 | 1−7.42T+37T2 |
| 41 | 1−5.64T+41T2 |
| 43 | 1+1.90T+43T2 |
| 47 | 1+9.33T+47T2 |
| 53 | 1−13.8T+53T2 |
| 59 | 1−5.27T+59T2 |
| 61 | 1+8.51T+61T2 |
| 67 | 1−4.10T+67T2 |
| 71 | 1+11.7T+71T2 |
| 73 | 1+10.4T+73T2 |
| 79 | 1−13.7T+79T2 |
| 83 | 1−3.32T+83T2 |
| 89 | 1+3.58T+89T2 |
| 97 | 1+9.02T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.39044580534011118362598037612, −12.16639880919803416218905565180, −11.28230148328621455379942078355, −10.33482649441925781624541748506, −9.523336456815885102911488976996, −8.367300205792908111679029711403, −6.74179140659092668547956801214, −6.02785255257524048626341650016, −4.37006479462296182814920270020, −1.14760301018491783932398264453,
1.14760301018491783932398264453, 4.37006479462296182814920270020, 6.02785255257524048626341650016, 6.74179140659092668547956801214, 8.367300205792908111679029711403, 9.523336456815885102911488976996, 10.33482649441925781624541748506, 11.28230148328621455379942078355, 12.16639880919803416218905565180, 13.39044580534011118362598037612