Properties

Label 2-115-1.1-c1-0-5
Degree $2$
Conductor $115$
Sign $1$
Analytic cond. $0.918279$
Root an. cond. $0.958269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.32·2-s + 1.56·3-s − 0.231·4-s + 5-s + 2.07·6-s − 3.50·7-s − 2.96·8-s − 0.561·9-s + 1.32·10-s − 0.659·11-s − 0.362·12-s + 5.91·13-s − 4.65·14-s + 1.56·15-s − 3.48·16-s + 0.844·17-s − 0.746·18-s + 0.659·19-s − 0.231·20-s − 5.47·21-s − 0.876·22-s − 23-s − 4.63·24-s + 25-s + 7.85·26-s − 5.56·27-s + 0.812·28-s + ⋯
L(s)  = 1  + 0.940·2-s + 0.901·3-s − 0.115·4-s + 0.447·5-s + 0.847·6-s − 1.32·7-s − 1.04·8-s − 0.187·9-s + 0.420·10-s − 0.198·11-s − 0.104·12-s + 1.63·13-s − 1.24·14-s + 0.403·15-s − 0.870·16-s + 0.204·17-s − 0.176·18-s + 0.151·19-s − 0.0518·20-s − 1.19·21-s − 0.186·22-s − 0.208·23-s − 0.945·24-s + 0.200·25-s + 1.54·26-s − 1.07·27-s + 0.153·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $1$
Analytic conductor: \(0.918279\)
Root analytic conductor: \(0.958269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.712218692\)
\(L(\frac12)\) \(\approx\) \(1.712218692\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
23 \( 1 + T \)
good2 \( 1 - 1.32T + 2T^{2} \)
3 \( 1 - 1.56T + 3T^{2} \)
7 \( 1 + 3.50T + 7T^{2} \)
11 \( 1 + 0.659T + 11T^{2} \)
13 \( 1 - 5.91T + 13T^{2} \)
17 \( 1 - 0.844T + 17T^{2} \)
19 \( 1 - 0.659T + 19T^{2} \)
29 \( 1 - 1.59T + 29T^{2} \)
31 \( 1 - 6.75T + 31T^{2} \)
37 \( 1 + 11.7T + 37T^{2} \)
41 \( 1 - 6.40T + 41T^{2} \)
43 \( 1 + 9.47T + 43T^{2} \)
47 \( 1 - 6.88T + 47T^{2} \)
53 \( 1 - 6.64T + 53T^{2} \)
59 \( 1 + 4.97T + 59T^{2} \)
61 \( 1 - 5.78T + 61T^{2} \)
67 \( 1 - 8.31T + 67T^{2} \)
71 \( 1 + 3.63T + 71T^{2} \)
73 \( 1 + 13.9T + 73T^{2} \)
79 \( 1 - 1.02T + 79T^{2} \)
83 \( 1 + 8.27T + 83T^{2} \)
89 \( 1 - 17.6T + 89T^{2} \)
97 \( 1 + 8.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57963036176141021296510619764, −13.04634885074001251790285594339, −11.88144176656244784495546319528, −10.27472711198260801204894879963, −9.175151842257403588921190550651, −8.437168023621527615153667015029, −6.53762544700321598932036337105, −5.61870438256016155150094705080, −3.79699061686296646681914444342, −2.93276387909680137409825122262, 2.93276387909680137409825122262, 3.79699061686296646681914444342, 5.61870438256016155150094705080, 6.53762544700321598932036337105, 8.437168023621527615153667015029, 9.175151842257403588921190550651, 10.27472711198260801204894879963, 11.88144176656244784495546319528, 13.04634885074001251790285594339, 13.57963036176141021296510619764

Graph of the $Z$-function along the critical line