L(s) = 1 | + 1.32·2-s + 1.56·3-s − 0.231·4-s + 5-s + 2.07·6-s − 3.50·7-s − 2.96·8-s − 0.561·9-s + 1.32·10-s − 0.659·11-s − 0.362·12-s + 5.91·13-s − 4.65·14-s + 1.56·15-s − 3.48·16-s + 0.844·17-s − 0.746·18-s + 0.659·19-s − 0.231·20-s − 5.47·21-s − 0.876·22-s − 23-s − 4.63·24-s + 25-s + 7.85·26-s − 5.56·27-s + 0.812·28-s + ⋯ |
L(s) = 1 | + 0.940·2-s + 0.901·3-s − 0.115·4-s + 0.447·5-s + 0.847·6-s − 1.32·7-s − 1.04·8-s − 0.187·9-s + 0.420·10-s − 0.198·11-s − 0.104·12-s + 1.63·13-s − 1.24·14-s + 0.403·15-s − 0.870·16-s + 0.204·17-s − 0.176·18-s + 0.151·19-s − 0.0518·20-s − 1.19·21-s − 0.186·22-s − 0.208·23-s − 0.945·24-s + 0.200·25-s + 1.54·26-s − 1.07·27-s + 0.153·28-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.712218692 |
L(21) |
≈ |
1.712218692 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 23 | 1+T |
good | 2 | 1−1.32T+2T2 |
| 3 | 1−1.56T+3T2 |
| 7 | 1+3.50T+7T2 |
| 11 | 1+0.659T+11T2 |
| 13 | 1−5.91T+13T2 |
| 17 | 1−0.844T+17T2 |
| 19 | 1−0.659T+19T2 |
| 29 | 1−1.59T+29T2 |
| 31 | 1−6.75T+31T2 |
| 37 | 1+11.7T+37T2 |
| 41 | 1−6.40T+41T2 |
| 43 | 1+9.47T+43T2 |
| 47 | 1−6.88T+47T2 |
| 53 | 1−6.64T+53T2 |
| 59 | 1+4.97T+59T2 |
| 61 | 1−5.78T+61T2 |
| 67 | 1−8.31T+67T2 |
| 71 | 1+3.63T+71T2 |
| 73 | 1+13.9T+73T2 |
| 79 | 1−1.02T+79T2 |
| 83 | 1+8.27T+83T2 |
| 89 | 1−17.6T+89T2 |
| 97 | 1+8.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.57963036176141021296510619764, −13.04634885074001251790285594339, −11.88144176656244784495546319528, −10.27472711198260801204894879963, −9.175151842257403588921190550651, −8.437168023621527615153667015029, −6.53762544700321598932036337105, −5.61870438256016155150094705080, −3.79699061686296646681914444342, −2.93276387909680137409825122262,
2.93276387909680137409825122262, 3.79699061686296646681914444342, 5.61870438256016155150094705080, 6.53762544700321598932036337105, 8.437168023621527615153667015029, 9.175151842257403588921190550651, 10.27472711198260801204894879963, 11.88144176656244784495546319528, 13.04634885074001251790285594339, 13.57963036176141021296510619764