L(s) = 1 | + 0.0457·2-s − 10.2·3-s − 7.99·4-s + 5·5-s − 0.467·6-s − 33.8·7-s − 0.732·8-s + 77.4·9-s + 0.228·10-s − 21.0·11-s + 81.7·12-s + 32.8·13-s − 1.54·14-s − 51.0·15-s + 63.9·16-s − 28.7·17-s + 3.54·18-s + 67.2·19-s − 39.9·20-s + 346.·21-s − 0.962·22-s + 23·23-s + 7.48·24-s + 25·25-s + 1.50·26-s − 515.·27-s + 270.·28-s + ⋯ |
L(s) = 1 | + 0.0161·2-s − 1.96·3-s − 0.999·4-s + 0.447·5-s − 0.0318·6-s − 1.82·7-s − 0.0323·8-s + 2.86·9-s + 0.00723·10-s − 0.576·11-s + 1.96·12-s + 0.701·13-s − 0.0295·14-s − 0.879·15-s + 0.999·16-s − 0.409·17-s + 0.0464·18-s + 0.812·19-s − 0.447·20-s + 3.59·21-s − 0.00932·22-s + 0.208·23-s + 0.0636·24-s + 0.200·25-s + 0.0113·26-s − 3.67·27-s + 1.82·28-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.4096378918 |
L(21) |
≈ |
0.4096378918 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−5T |
| 23 | 1−23T |
good | 2 | 1−0.0457T+8T2 |
| 3 | 1+10.2T+27T2 |
| 7 | 1+33.8T+343T2 |
| 11 | 1+21.0T+1.33e3T2 |
| 13 | 1−32.8T+2.19e3T2 |
| 17 | 1+28.7T+4.91e3T2 |
| 19 | 1−67.2T+6.85e3T2 |
| 29 | 1+199.T+2.43e4T2 |
| 31 | 1−2.47T+2.97e4T2 |
| 37 | 1+173.T+5.06e4T2 |
| 41 | 1−200.T+6.89e4T2 |
| 43 | 1−198.T+7.95e4T2 |
| 47 | 1−33.4T+1.03e5T2 |
| 53 | 1−556.T+1.48e5T2 |
| 59 | 1−234.T+2.05e5T2 |
| 61 | 1−26.2T+2.26e5T2 |
| 67 | 1−190.T+3.00e5T2 |
| 71 | 1−745.T+3.57e5T2 |
| 73 | 1+742.T+3.89e5T2 |
| 79 | 1−715.T+4.93e5T2 |
| 83 | 1−766.T+5.71e5T2 |
| 89 | 1+683.T+7.04e5T2 |
| 97 | 1+1.17e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.01900088309646621380526718782, −12.25539238915022634107517798230, −10.88165945493859993582384400909, −10.01058547559569213935077954047, −9.279927742719726671081680563055, −7.13545668566898270368315203117, −6.02491637508595939800395644725, −5.35056184412338496762954718137, −3.84710920530781106597727684870, −0.60087811501644249758278501196,
0.60087811501644249758278501196, 3.84710920530781106597727684870, 5.35056184412338496762954718137, 6.02491637508595939800395644725, 7.13545668566898270368315203117, 9.279927742719726671081680563055, 10.01058547559569213935077954047, 10.88165945493859993582384400909, 12.25539238915022634107517798230, 13.01900088309646621380526718782