L(s) = 1 | + (0.00959 − 0.134i)2-s + (−1.51 + 0.329i)3-s + (7.90 + 1.13i)4-s + (11.1 + 0.644i)5-s + (0.0297 + 0.206i)6-s + (3.12 − 1.70i)7-s + (0.457 − 2.10i)8-s + (−22.3 + 10.2i)9-s + (0.193 − 1.49i)10-s + (12.1 + 10.5i)11-s + (−12.3 + 0.883i)12-s + (20.9 − 38.4i)13-s + (−0.198 − 0.435i)14-s + (−17.1 + 2.70i)15-s + (60.9 + 17.9i)16-s + (79.5 + 59.5i)17-s + ⋯ |
L(s) = 1 | + (0.00339 − 0.0474i)2-s + (−0.291 + 0.0634i)3-s + (0.987 + 0.141i)4-s + (0.998 + 0.0576i)5-s + (0.00202 + 0.0140i)6-s + (0.168 − 0.0920i)7-s + (0.0201 − 0.0928i)8-s + (−0.828 + 0.378i)9-s + (0.00612 − 0.0471i)10-s + (0.334 + 0.289i)11-s + (−0.297 + 0.0212i)12-s + (0.447 − 0.820i)13-s + (−0.00379 − 0.00831i)14-s + (−0.294 + 0.0465i)15-s + (0.952 + 0.279i)16-s + (1.13 + 0.849i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.978−0.206i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(0.978−0.206i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.978−0.206i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), 0.978−0.206i)
|
Particular Values
L(2) |
≈ |
2.09169+0.218262i |
L(21) |
≈ |
2.09169+0.218262i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−11.1−0.644i)T |
| 23 | 1+(−48.5+99.0i)T |
good | 2 | 1+(−0.00959+0.134i)T+(−7.91−1.13i)T2 |
| 3 | 1+(1.51−0.329i)T+(24.5−11.2i)T2 |
| 7 | 1+(−3.12+1.70i)T+(185.−288.i)T2 |
| 11 | 1+(−12.1−10.5i)T+(189.+1.31e3i)T2 |
| 13 | 1+(−20.9+38.4i)T+(−1.18e3−1.84e3i)T2 |
| 17 | 1+(−79.5−59.5i)T+(1.38e3+4.71e3i)T2 |
| 19 | 1+(3.75−26.0i)T+(−6.58e3−1.93e3i)T2 |
| 29 | 1+(141.−20.3i)T+(2.34e4−6.87e3i)T2 |
| 31 | 1+(183.−118.i)T+(1.23e4−2.70e4i)T2 |
| 37 | 1+(150.+56.1i)T+(3.82e4+3.31e4i)T2 |
| 41 | 1+(−112.+245.i)T+(−4.51e4−5.20e4i)T2 |
| 43 | 1+(5.35+24.6i)T+(−7.23e4+3.30e4i)T2 |
| 47 | 1+(321.+321.i)T+1.03e5iT2 |
| 53 | 1+(−204.−375.i)T+(−8.04e4+1.25e5i)T2 |
| 59 | 1+(−25.0−85.1i)T+(−1.72e5+1.11e5i)T2 |
| 61 | 1+(277.+431.i)T+(−9.42e4+2.06e5i)T2 |
| 67 | 1+(864.+61.8i)T+(2.97e5+4.28e4i)T2 |
| 71 | 1+(403.+465.i)T+(−5.09e4+3.54e5i)T2 |
| 73 | 1+(360.+482.i)T+(−1.09e5+3.73e5i)T2 |
| 79 | 1+(1.16e3−341.i)T+(4.14e5−2.66e5i)T2 |
| 83 | 1+(−174.+468.i)T+(−4.32e5−3.74e5i)T2 |
| 89 | 1+(−361.−232.i)T+(2.92e5+6.41e5i)T2 |
| 97 | 1+(−111.−298.i)T+(−6.89e5+5.97e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.95325190923654764536859537162, −12.10167118343735973535481147568, −10.78238605064505427467360208624, −10.40172667873499202948394582429, −8.807039005423541932733738450021, −7.54702181743851860462796347042, −6.18732320319276988049855927878, −5.44395862306148813200386333580, −3.20817861499776172242194417619, −1.68622442522467382027371067936,
1.49032874777373313063752934026, 3.08874181581593201114293776002, 5.41896852137002351752569100777, 6.16995080414583038712995500776, 7.29845917198480675586919295253, 8.910773442253733834275503210741, 9.882684385220502005511786297863, 11.29795115499672054375946474062, 11.64555190410804812973609538132, 13.06233305926691194887323371454