L(s) = 1 | + (0.00959 − 0.134i)2-s + (−1.51 + 0.329i)3-s + (7.90 + 1.13i)4-s + (11.1 + 0.644i)5-s + (0.0297 + 0.206i)6-s + (3.12 − 1.70i)7-s + (0.457 − 2.10i)8-s + (−22.3 + 10.2i)9-s + (0.193 − 1.49i)10-s + (12.1 + 10.5i)11-s + (−12.3 + 0.883i)12-s + (20.9 − 38.4i)13-s + (−0.198 − 0.435i)14-s + (−17.1 + 2.70i)15-s + (60.9 + 17.9i)16-s + (79.5 + 59.5i)17-s + ⋯ |
L(s) = 1 | + (0.00339 − 0.0474i)2-s + (−0.291 + 0.0634i)3-s + (0.987 + 0.141i)4-s + (0.998 + 0.0576i)5-s + (0.00202 + 0.0140i)6-s + (0.168 − 0.0920i)7-s + (0.0201 − 0.0928i)8-s + (−0.828 + 0.378i)9-s + (0.00612 − 0.0471i)10-s + (0.334 + 0.289i)11-s + (−0.297 + 0.0212i)12-s + (0.447 − 0.820i)13-s + (−0.00379 − 0.00831i)14-s + (−0.294 + 0.0465i)15-s + (0.952 + 0.279i)16-s + (1.13 + 0.849i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.206i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.978 - 0.206i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.09169 + 0.218262i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09169 + 0.218262i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-11.1 - 0.644i)T \) |
| 23 | \( 1 + (-48.5 + 99.0i)T \) |
good | 2 | \( 1 + (-0.00959 + 0.134i)T + (-7.91 - 1.13i)T^{2} \) |
| 3 | \( 1 + (1.51 - 0.329i)T + (24.5 - 11.2i)T^{2} \) |
| 7 | \( 1 + (-3.12 + 1.70i)T + (185. - 288. i)T^{2} \) |
| 11 | \( 1 + (-12.1 - 10.5i)T + (189. + 1.31e3i)T^{2} \) |
| 13 | \( 1 + (-20.9 + 38.4i)T + (-1.18e3 - 1.84e3i)T^{2} \) |
| 17 | \( 1 + (-79.5 - 59.5i)T + (1.38e3 + 4.71e3i)T^{2} \) |
| 19 | \( 1 + (3.75 - 26.0i)T + (-6.58e3 - 1.93e3i)T^{2} \) |
| 29 | \( 1 + (141. - 20.3i)T + (2.34e4 - 6.87e3i)T^{2} \) |
| 31 | \( 1 + (183. - 118. i)T + (1.23e4 - 2.70e4i)T^{2} \) |
| 37 | \( 1 + (150. + 56.1i)T + (3.82e4 + 3.31e4i)T^{2} \) |
| 41 | \( 1 + (-112. + 245. i)T + (-4.51e4 - 5.20e4i)T^{2} \) |
| 43 | \( 1 + (5.35 + 24.6i)T + (-7.23e4 + 3.30e4i)T^{2} \) |
| 47 | \( 1 + (321. + 321. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (-204. - 375. i)T + (-8.04e4 + 1.25e5i)T^{2} \) |
| 59 | \( 1 + (-25.0 - 85.1i)T + (-1.72e5 + 1.11e5i)T^{2} \) |
| 61 | \( 1 + (277. + 431. i)T + (-9.42e4 + 2.06e5i)T^{2} \) |
| 67 | \( 1 + (864. + 61.8i)T + (2.97e5 + 4.28e4i)T^{2} \) |
| 71 | \( 1 + (403. + 465. i)T + (-5.09e4 + 3.54e5i)T^{2} \) |
| 73 | \( 1 + (360. + 482. i)T + (-1.09e5 + 3.73e5i)T^{2} \) |
| 79 | \( 1 + (1.16e3 - 341. i)T + (4.14e5 - 2.66e5i)T^{2} \) |
| 83 | \( 1 + (-174. + 468. i)T + (-4.32e5 - 3.74e5i)T^{2} \) |
| 89 | \( 1 + (-361. - 232. i)T + (2.92e5 + 6.41e5i)T^{2} \) |
| 97 | \( 1 + (-111. - 298. i)T + (-6.89e5 + 5.97e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.95325190923654764536859537162, −12.10167118343735973535481147568, −10.78238605064505427467360208624, −10.40172667873499202948394582429, −8.807039005423541932733738450021, −7.54702181743851860462796347042, −6.18732320319276988049855927878, −5.44395862306148813200386333580, −3.20817861499776172242194417619, −1.68622442522467382027371067936,
1.49032874777373313063752934026, 3.08874181581593201114293776002, 5.41896852137002351752569100777, 6.16995080414583038712995500776, 7.29845917198480675586919295253, 8.910773442253733834275503210741, 9.882684385220502005511786297863, 11.29795115499672054375946474062, 11.64555190410804812973609538132, 13.06233305926691194887323371454