Properties

Label 2-115-115.53-c3-0-17
Degree $2$
Conductor $115$
Sign $0.978 + 0.206i$
Analytic cond. $6.78521$
Root an. cond. $2.60484$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.00959 + 0.134i)2-s + (−1.51 − 0.329i)3-s + (7.90 − 1.13i)4-s + (11.1 − 0.644i)5-s + (0.0297 − 0.206i)6-s + (3.12 + 1.70i)7-s + (0.457 + 2.10i)8-s + (−22.3 − 10.2i)9-s + (0.193 + 1.49i)10-s + (12.1 − 10.5i)11-s + (−12.3 − 0.883i)12-s + (20.9 + 38.4i)13-s + (−0.198 + 0.435i)14-s + (−17.1 − 2.70i)15-s + (60.9 − 17.9i)16-s + (79.5 − 59.5i)17-s + ⋯
L(s)  = 1  + (0.00339 + 0.0474i)2-s + (−0.291 − 0.0634i)3-s + (0.987 − 0.141i)4-s + (0.998 − 0.0576i)5-s + (0.00202 − 0.0140i)6-s + (0.168 + 0.0920i)7-s + (0.0201 + 0.0928i)8-s + (−0.828 − 0.378i)9-s + (0.00612 + 0.0471i)10-s + (0.334 − 0.289i)11-s + (−0.297 − 0.0212i)12-s + (0.447 + 0.820i)13-s + (−0.00379 + 0.00831i)14-s + (−0.294 − 0.0465i)15-s + (0.952 − 0.279i)16-s + (1.13 − 0.849i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.206i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.978 + 0.206i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $0.978 + 0.206i$
Analytic conductor: \(6.78521\)
Root analytic conductor: \(2.60484\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{115} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :3/2),\ 0.978 + 0.206i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.09169 - 0.218262i\)
\(L(\frac12)\) \(\approx\) \(2.09169 - 0.218262i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-11.1 + 0.644i)T \)
23 \( 1 + (-48.5 - 99.0i)T \)
good2 \( 1 + (-0.00959 - 0.134i)T + (-7.91 + 1.13i)T^{2} \)
3 \( 1 + (1.51 + 0.329i)T + (24.5 + 11.2i)T^{2} \)
7 \( 1 + (-3.12 - 1.70i)T + (185. + 288. i)T^{2} \)
11 \( 1 + (-12.1 + 10.5i)T + (189. - 1.31e3i)T^{2} \)
13 \( 1 + (-20.9 - 38.4i)T + (-1.18e3 + 1.84e3i)T^{2} \)
17 \( 1 + (-79.5 + 59.5i)T + (1.38e3 - 4.71e3i)T^{2} \)
19 \( 1 + (3.75 + 26.0i)T + (-6.58e3 + 1.93e3i)T^{2} \)
29 \( 1 + (141. + 20.3i)T + (2.34e4 + 6.87e3i)T^{2} \)
31 \( 1 + (183. + 118. i)T + (1.23e4 + 2.70e4i)T^{2} \)
37 \( 1 + (150. - 56.1i)T + (3.82e4 - 3.31e4i)T^{2} \)
41 \( 1 + (-112. - 245. i)T + (-4.51e4 + 5.20e4i)T^{2} \)
43 \( 1 + (5.35 - 24.6i)T + (-7.23e4 - 3.30e4i)T^{2} \)
47 \( 1 + (321. - 321. i)T - 1.03e5iT^{2} \)
53 \( 1 + (-204. + 375. i)T + (-8.04e4 - 1.25e5i)T^{2} \)
59 \( 1 + (-25.0 + 85.1i)T + (-1.72e5 - 1.11e5i)T^{2} \)
61 \( 1 + (277. - 431. i)T + (-9.42e4 - 2.06e5i)T^{2} \)
67 \( 1 + (864. - 61.8i)T + (2.97e5 - 4.28e4i)T^{2} \)
71 \( 1 + (403. - 465. i)T + (-5.09e4 - 3.54e5i)T^{2} \)
73 \( 1 + (360. - 482. i)T + (-1.09e5 - 3.73e5i)T^{2} \)
79 \( 1 + (1.16e3 + 341. i)T + (4.14e5 + 2.66e5i)T^{2} \)
83 \( 1 + (-174. - 468. i)T + (-4.32e5 + 3.74e5i)T^{2} \)
89 \( 1 + (-361. + 232. i)T + (2.92e5 - 6.41e5i)T^{2} \)
97 \( 1 + (-111. + 298. i)T + (-6.89e5 - 5.97e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06233305926691194887323371454, −11.64555190410804812973609538132, −11.29795115499672054375946474062, −9.882684385220502005511786297863, −8.910773442253733834275503210741, −7.29845917198480675586919295253, −6.16995080414583038712995500776, −5.41896852137002351752569100777, −3.08874181581593201114293776002, −1.49032874777373313063752934026, 1.68622442522467382027371067936, 3.20817861499776172242194417619, 5.44395862306148813200386333580, 6.18732320319276988049855927878, 7.54702181743851860462796347042, 8.807039005423541932733738450021, 10.40172667873499202948394582429, 10.78238605064505427467360208624, 12.10167118343735973535481147568, 12.95325190923654764536859537162

Graph of the $Z$-function along the critical line