L(s) = 1 | + (0.00959 + 0.134i)2-s + (−1.51 − 0.329i)3-s + (7.90 − 1.13i)4-s + (11.1 − 0.644i)5-s + (0.0297 − 0.206i)6-s + (3.12 + 1.70i)7-s + (0.457 + 2.10i)8-s + (−22.3 − 10.2i)9-s + (0.193 + 1.49i)10-s + (12.1 − 10.5i)11-s + (−12.3 − 0.883i)12-s + (20.9 + 38.4i)13-s + (−0.198 + 0.435i)14-s + (−17.1 − 2.70i)15-s + (60.9 − 17.9i)16-s + (79.5 − 59.5i)17-s + ⋯ |
L(s) = 1 | + (0.00339 + 0.0474i)2-s + (−0.291 − 0.0634i)3-s + (0.987 − 0.141i)4-s + (0.998 − 0.0576i)5-s + (0.00202 − 0.0140i)6-s + (0.168 + 0.0920i)7-s + (0.0201 + 0.0928i)8-s + (−0.828 − 0.378i)9-s + (0.00612 + 0.0471i)10-s + (0.334 − 0.289i)11-s + (−0.297 − 0.0212i)12-s + (0.447 + 0.820i)13-s + (−0.00379 + 0.00831i)14-s + (−0.294 − 0.0465i)15-s + (0.952 − 0.279i)16-s + (1.13 − 0.849i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.978+0.206i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(0.978+0.206i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.978+0.206i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), 0.978+0.206i)
|
Particular Values
L(2) |
≈ |
2.09169−0.218262i |
L(21) |
≈ |
2.09169−0.218262i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−11.1+0.644i)T |
| 23 | 1+(−48.5−99.0i)T |
good | 2 | 1+(−0.00959−0.134i)T+(−7.91+1.13i)T2 |
| 3 | 1+(1.51+0.329i)T+(24.5+11.2i)T2 |
| 7 | 1+(−3.12−1.70i)T+(185.+288.i)T2 |
| 11 | 1+(−12.1+10.5i)T+(189.−1.31e3i)T2 |
| 13 | 1+(−20.9−38.4i)T+(−1.18e3+1.84e3i)T2 |
| 17 | 1+(−79.5+59.5i)T+(1.38e3−4.71e3i)T2 |
| 19 | 1+(3.75+26.0i)T+(−6.58e3+1.93e3i)T2 |
| 29 | 1+(141.+20.3i)T+(2.34e4+6.87e3i)T2 |
| 31 | 1+(183.+118.i)T+(1.23e4+2.70e4i)T2 |
| 37 | 1+(150.−56.1i)T+(3.82e4−3.31e4i)T2 |
| 41 | 1+(−112.−245.i)T+(−4.51e4+5.20e4i)T2 |
| 43 | 1+(5.35−24.6i)T+(−7.23e4−3.30e4i)T2 |
| 47 | 1+(321.−321.i)T−1.03e5iT2 |
| 53 | 1+(−204.+375.i)T+(−8.04e4−1.25e5i)T2 |
| 59 | 1+(−25.0+85.1i)T+(−1.72e5−1.11e5i)T2 |
| 61 | 1+(277.−431.i)T+(−9.42e4−2.06e5i)T2 |
| 67 | 1+(864.−61.8i)T+(2.97e5−4.28e4i)T2 |
| 71 | 1+(403.−465.i)T+(−5.09e4−3.54e5i)T2 |
| 73 | 1+(360.−482.i)T+(−1.09e5−3.73e5i)T2 |
| 79 | 1+(1.16e3+341.i)T+(4.14e5+2.66e5i)T2 |
| 83 | 1+(−174.−468.i)T+(−4.32e5+3.74e5i)T2 |
| 89 | 1+(−361.+232.i)T+(2.92e5−6.41e5i)T2 |
| 97 | 1+(−111.+298.i)T+(−6.89e5−5.97e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.06233305926691194887323371454, −11.64555190410804812973609538132, −11.29795115499672054375946474062, −9.882684385220502005511786297863, −8.910773442253733834275503210741, −7.29845917198480675586919295253, −6.16995080414583038712995500776, −5.41896852137002351752569100777, −3.08874181581593201114293776002, −1.49032874777373313063752934026,
1.68622442522467382027371067936, 3.20817861499776172242194417619, 5.44395862306148813200386333580, 6.18732320319276988049855927878, 7.54702181743851860462796347042, 8.807039005423541932733738450021, 10.40172667873499202948394582429, 10.78238605064505427467360208624, 12.10167118343735973535481147568, 12.95325190923654764536859537162