L(s) = 1 | + 2.36·3-s + 5-s + 2.16·7-s + 2.58·9-s + 1.75·11-s + 2.60·13-s + 2.36·15-s − 5.49·17-s + 5.90·19-s + 5.12·21-s − 7.29·23-s + 25-s − 0.978·27-s − 29-s − 0.169·31-s + 4.15·33-s + 2.16·35-s + 3.75·37-s + 6.16·39-s − 10.3·41-s + 4.55·43-s + 2.58·45-s + 1.17·47-s − 2.29·49-s − 12.9·51-s + 11.8·53-s + 1.75·55-s + ⋯ |
L(s) = 1 | + 1.36·3-s + 0.447·5-s + 0.820·7-s + 0.862·9-s + 0.529·11-s + 0.723·13-s + 0.610·15-s − 1.33·17-s + 1.35·19-s + 1.11·21-s − 1.52·23-s + 0.200·25-s − 0.188·27-s − 0.185·29-s − 0.0305·31-s + 0.722·33-s + 0.366·35-s + 0.617·37-s + 0.986·39-s − 1.62·41-s + 0.694·43-s + 0.385·45-s + 0.171·47-s − 0.327·49-s − 1.81·51-s + 1.62·53-s + 0.236·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.098549375 |
L(21) |
≈ |
3.098549375 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1+T |
good | 3 | 1−2.36T+3T2 |
| 7 | 1−2.16T+7T2 |
| 11 | 1−1.75T+11T2 |
| 13 | 1−2.60T+13T2 |
| 17 | 1+5.49T+17T2 |
| 19 | 1−5.90T+19T2 |
| 23 | 1+7.29T+23T2 |
| 31 | 1+0.169T+31T2 |
| 37 | 1−3.75T+37T2 |
| 41 | 1+10.3T+41T2 |
| 43 | 1−4.55T+43T2 |
| 47 | 1−1.17T+47T2 |
| 53 | 1−11.8T+53T2 |
| 59 | 1+4.11T+59T2 |
| 61 | 1−1.00T+61T2 |
| 67 | 1+8.48T+67T2 |
| 71 | 1−6.10T+71T2 |
| 73 | 1+1.72T+73T2 |
| 79 | 1+2.02T+79T2 |
| 83 | 1−1.86T+83T2 |
| 89 | 1−16.5T+89T2 |
| 97 | 1−0.464T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.526575145113876665310531888466, −8.930590367603212666255588462952, −8.266399900780545732894954577342, −7.57316114623749431934838096163, −6.54995551773627559645820167044, −5.53786481669365680781751263131, −4.36110763073305416691484035441, −3.54343183443131347105662667459, −2.38600569989539124294696129828, −1.53198318254994865028898667172,
1.53198318254994865028898667172, 2.38600569989539124294696129828, 3.54343183443131347105662667459, 4.36110763073305416691484035441, 5.53786481669365680781751263131, 6.54995551773627559645820167044, 7.57316114623749431934838096163, 8.266399900780545732894954577342, 8.930590367603212666255588462952, 9.526575145113876665310531888466