L(s) = 1 | + 2.10·3-s + (−2.18 + 0.478i)5-s + (1.94 + 1.94i)7-s + 1.41·9-s + (0.883 + 0.883i)11-s + (2.69 + 2.69i)13-s + (−4.58 + 1.00i)15-s + 0.326i·17-s + (−5.28 + 5.28i)19-s + (4.09 + 4.09i)21-s + (−0.557 + 0.557i)23-s + (4.54 − 2.09i)25-s − 3.33·27-s + (−1.35 − 5.21i)29-s + (3.27 + 3.27i)31-s + ⋯ |
L(s) = 1 | + 1.21·3-s + (−0.976 + 0.214i)5-s + (0.736 + 0.736i)7-s + 0.471·9-s + (0.266 + 0.266i)11-s + (0.747 + 0.747i)13-s + (−1.18 + 0.259i)15-s + 0.0792i·17-s + (−1.21 + 1.21i)19-s + (0.893 + 0.893i)21-s + (−0.116 + 0.116i)23-s + (0.908 − 0.418i)25-s − 0.641·27-s + (−0.252 − 0.967i)29-s + (0.588 + 0.588i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.348 - 0.937i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.348 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.110666508\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.110666508\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.18 - 0.478i)T \) |
| 29 | \( 1 + (1.35 + 5.21i)T \) |
good | 3 | \( 1 - 2.10T + 3T^{2} \) |
| 7 | \( 1 + (-1.94 - 1.94i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.883 - 0.883i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.69 - 2.69i)T + 13iT^{2} \) |
| 17 | \( 1 - 0.326iT - 17T^{2} \) |
| 19 | \( 1 + (5.28 - 5.28i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.557 - 0.557i)T - 23iT^{2} \) |
| 31 | \( 1 + (-3.27 - 3.27i)T + 31iT^{2} \) |
| 37 | \( 1 - 6.69T + 37T^{2} \) |
| 41 | \( 1 + (6.35 - 6.35i)T - 41iT^{2} \) |
| 43 | \( 1 + 2.44T + 43T^{2} \) |
| 47 | \( 1 - 11.9T + 47T^{2} \) |
| 53 | \( 1 + (-1.79 + 1.79i)T - 53iT^{2} \) |
| 59 | \( 1 - 6.73iT - 59T^{2} \) |
| 61 | \( 1 + (-5.50 - 5.50i)T + 61iT^{2} \) |
| 67 | \( 1 + (-3.12 + 3.12i)T - 67iT^{2} \) |
| 71 | \( 1 - 3.62iT - 71T^{2} \) |
| 73 | \( 1 - 11.1iT - 73T^{2} \) |
| 79 | \( 1 + (-5.17 + 5.17i)T - 79iT^{2} \) |
| 83 | \( 1 + (-3.60 + 3.60i)T - 83iT^{2} \) |
| 89 | \( 1 + (-10.8 + 10.8i)T - 89iT^{2} \) |
| 97 | \( 1 + 3.89T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.774811896197410877634230820611, −8.771400886931038899490712356891, −8.374529713219187162936773118439, −7.84446523544885539107334547150, −6.77582961032013623431286606667, −5.79002492895016118402652923669, −4.35440752662396868624274367060, −3.85516274642118343481263558149, −2.68894184871111146730505059729, −1.71866978040072504220136216780,
0.826707141795315107263985317847, 2.38132045155952489346617767103, 3.51872243692626643299599230570, 4.11818273547936216856812287205, 5.10256117341001122114583804376, 6.52131678105717021591850271786, 7.48340017791655134561201526292, 8.109448817202197421017328702972, 8.631381767314844192674889231725, 9.299463410468743271056410213659