L(s) = 1 | + 2.10·3-s + (−2.18 + 0.478i)5-s + (1.94 + 1.94i)7-s + 1.41·9-s + (0.883 + 0.883i)11-s + (2.69 + 2.69i)13-s + (−4.58 + 1.00i)15-s + 0.326i·17-s + (−5.28 + 5.28i)19-s + (4.09 + 4.09i)21-s + (−0.557 + 0.557i)23-s + (4.54 − 2.09i)25-s − 3.33·27-s + (−1.35 − 5.21i)29-s + (3.27 + 3.27i)31-s + ⋯ |
L(s) = 1 | + 1.21·3-s + (−0.976 + 0.214i)5-s + (0.736 + 0.736i)7-s + 0.471·9-s + (0.266 + 0.266i)11-s + (0.747 + 0.747i)13-s + (−1.18 + 0.259i)15-s + 0.0792i·17-s + (−1.21 + 1.21i)19-s + (0.893 + 0.893i)21-s + (−0.116 + 0.116i)23-s + (0.908 − 0.418i)25-s − 0.641·27-s + (−0.252 − 0.967i)29-s + (0.588 + 0.588i)31-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)(0.348−0.937i)Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)(0.348−0.937i)Λ(1−s)
Degree: |
2 |
Conductor: |
1160
= 23⋅5⋅29
|
Sign: |
0.348−0.937i
|
Analytic conductor: |
9.26264 |
Root analytic conductor: |
3.04345 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1160(737,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1160, ( :1/2), 0.348−0.937i)
|
Particular Values
L(1) |
≈ |
2.110666508 |
L(21) |
≈ |
2.110666508 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2.18−0.478i)T |
| 29 | 1+(1.35+5.21i)T |
good | 3 | 1−2.10T+3T2 |
| 7 | 1+(−1.94−1.94i)T+7iT2 |
| 11 | 1+(−0.883−0.883i)T+11iT2 |
| 13 | 1+(−2.69−2.69i)T+13iT2 |
| 17 | 1−0.326iT−17T2 |
| 19 | 1+(5.28−5.28i)T−19iT2 |
| 23 | 1+(0.557−0.557i)T−23iT2 |
| 31 | 1+(−3.27−3.27i)T+31iT2 |
| 37 | 1−6.69T+37T2 |
| 41 | 1+(6.35−6.35i)T−41iT2 |
| 43 | 1+2.44T+43T2 |
| 47 | 1−11.9T+47T2 |
| 53 | 1+(−1.79+1.79i)T−53iT2 |
| 59 | 1−6.73iT−59T2 |
| 61 | 1+(−5.50−5.50i)T+61iT2 |
| 67 | 1+(−3.12+3.12i)T−67iT2 |
| 71 | 1−3.62iT−71T2 |
| 73 | 1−11.1iT−73T2 |
| 79 | 1+(−5.17+5.17i)T−79iT2 |
| 83 | 1+(−3.60+3.60i)T−83iT2 |
| 89 | 1+(−10.8+10.8i)T−89iT2 |
| 97 | 1+3.89T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.774811896197410877634230820611, −8.771400886931038899490712356891, −8.374529713219187162936773118439, −7.84446523544885539107334547150, −6.77582961032013623431286606667, −5.79002492895016118402652923669, −4.35440752662396868624274367060, −3.85516274642118343481263558149, −2.68894184871111146730505059729, −1.71866978040072504220136216780,
0.826707141795315107263985317847, 2.38132045155952489346617767103, 3.51872243692626643299599230570, 4.11818273547936216856812287205, 5.10256117341001122114583804376, 6.52131678105717021591850271786, 7.48340017791655134561201526292, 8.109448817202197421017328702972, 8.631381767314844192674889231725, 9.299463410468743271056410213659