L(s) = 1 | + 2.10·3-s + (−2.18 − 0.478i)5-s + (1.94 − 1.94i)7-s + 1.41·9-s + (0.883 − 0.883i)11-s + (2.69 − 2.69i)13-s + (−4.58 − 1.00i)15-s − 0.326i·17-s + (−5.28 − 5.28i)19-s + (4.09 − 4.09i)21-s + (−0.557 − 0.557i)23-s + (4.54 + 2.09i)25-s − 3.33·27-s + (−1.35 + 5.21i)29-s + (3.27 − 3.27i)31-s + ⋯ |
L(s) = 1 | + 1.21·3-s + (−0.976 − 0.214i)5-s + (0.736 − 0.736i)7-s + 0.471·9-s + (0.266 − 0.266i)11-s + (0.747 − 0.747i)13-s + (−1.18 − 0.259i)15-s − 0.0792i·17-s + (−1.21 − 1.21i)19-s + (0.893 − 0.893i)21-s + (−0.116 − 0.116i)23-s + (0.908 + 0.418i)25-s − 0.641·27-s + (−0.252 + 0.967i)29-s + (0.588 − 0.588i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.348 + 0.937i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.348 + 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.110666508\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.110666508\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.18 + 0.478i)T \) |
| 29 | \( 1 + (1.35 - 5.21i)T \) |
good | 3 | \( 1 - 2.10T + 3T^{2} \) |
| 7 | \( 1 + (-1.94 + 1.94i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.883 + 0.883i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.69 + 2.69i)T - 13iT^{2} \) |
| 17 | \( 1 + 0.326iT - 17T^{2} \) |
| 19 | \( 1 + (5.28 + 5.28i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.557 + 0.557i)T + 23iT^{2} \) |
| 31 | \( 1 + (-3.27 + 3.27i)T - 31iT^{2} \) |
| 37 | \( 1 - 6.69T + 37T^{2} \) |
| 41 | \( 1 + (6.35 + 6.35i)T + 41iT^{2} \) |
| 43 | \( 1 + 2.44T + 43T^{2} \) |
| 47 | \( 1 - 11.9T + 47T^{2} \) |
| 53 | \( 1 + (-1.79 - 1.79i)T + 53iT^{2} \) |
| 59 | \( 1 + 6.73iT - 59T^{2} \) |
| 61 | \( 1 + (-5.50 + 5.50i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3.12 - 3.12i)T + 67iT^{2} \) |
| 71 | \( 1 + 3.62iT - 71T^{2} \) |
| 73 | \( 1 + 11.1iT - 73T^{2} \) |
| 79 | \( 1 + (-5.17 - 5.17i)T + 79iT^{2} \) |
| 83 | \( 1 + (-3.60 - 3.60i)T + 83iT^{2} \) |
| 89 | \( 1 + (-10.8 - 10.8i)T + 89iT^{2} \) |
| 97 | \( 1 + 3.89T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.299463410468743271056410213659, −8.631381767314844192674889231725, −8.109448817202197421017328702972, −7.48340017791655134561201526292, −6.52131678105717021591850271786, −5.10256117341001122114583804376, −4.11818273547936216856812287205, −3.51872243692626643299599230570, −2.38132045155952489346617767103, −0.826707141795315107263985317847,
1.71866978040072504220136216780, 2.68894184871111146730505059729, 3.85516274642118343481263558149, 4.35440752662396868624274367060, 5.79002492895016118402652923669, 6.77582961032013623431286606667, 7.84446523544885539107334547150, 8.374529713219187162936773118439, 8.771400886931038899490712356891, 9.774811896197410877634230820611