L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s − 2·7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 4·13-s − 2·14-s + 15-s + 16-s + 3·17-s + 18-s − 19-s + 20-s − 2·21-s + 22-s + 4·23-s + 24-s − 4·25-s + 4·26-s + 27-s − 2·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s + 1.10·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.229·19-s + 0.223·20-s − 0.436·21-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.784·26-s + 0.192·27-s − 0.377·28-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.391837219 |
L(21) |
≈ |
3.391837219 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 11 | 1−T |
| 19 | 1+T |
good | 5 | 1−T+pT2 |
| 7 | 1+2T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1−3T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+5T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−9T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+13T+pT2 |
| 67 | 1−13T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1+16T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+5T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.581944822888227403253424096380, −9.043718502561435427567016078815, −7.980179118153069516022158507229, −7.14273558884352157405370540959, −6.17372340837701233463853408340, −5.67999357501247308290616366784, −4.33257580321924699251330751557, −3.53794942184716470982502852668, −2.68938573736263700447372124696, −1.39093487590051632703460554838,
1.39093487590051632703460554838, 2.68938573736263700447372124696, 3.53794942184716470982502852668, 4.33257580321924699251330751557, 5.67999357501247308290616366784, 6.17372340837701233463853408340, 7.14273558884352157405370540959, 7.980179118153069516022158507229, 9.043718502561435427567016078815, 9.581944822888227403253424096380