Properties

Label 2-1254-1.1-c1-0-15
Degree $2$
Conductor $1254$
Sign $1$
Analytic cond. $10.0132$
Root an. cond. $3.16437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 2·7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 4·13-s − 2·14-s + 15-s + 16-s + 3·17-s + 18-s − 19-s + 20-s − 2·21-s + 22-s + 4·23-s + 24-s − 4·25-s + 4·26-s + 27-s − 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s + 1.10·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.229·19-s + 0.223·20-s − 0.436·21-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.784·26-s + 0.192·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1254\)    =    \(2 \cdot 3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(10.0132\)
Root analytic conductor: \(3.16437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1254,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.391837219\)
\(L(\frac12)\) \(\approx\) \(3.391837219\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 16 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 5 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.581944822888227403253424096380, −9.043718502561435427567016078815, −7.980179118153069516022158507229, −7.14273558884352157405370540959, −6.17372340837701233463853408340, −5.67999357501247308290616366784, −4.33257580321924699251330751557, −3.53794942184716470982502852668, −2.68938573736263700447372124696, −1.39093487590051632703460554838, 1.39093487590051632703460554838, 2.68938573736263700447372124696, 3.53794942184716470982502852668, 4.33257580321924699251330751557, 5.67999357501247308290616366784, 6.17372340837701233463853408340, 7.14273558884352157405370540959, 7.980179118153069516022158507229, 9.043718502561435427567016078815, 9.581944822888227403253424096380

Graph of the $Z$-function along the critical line