L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s − 2·7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 4·13-s − 2·14-s + 15-s + 16-s + 3·17-s + 18-s − 19-s + 20-s − 2·21-s + 22-s + 4·23-s + 24-s − 4·25-s + 4·26-s + 27-s − 2·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s + 1.10·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.229·19-s + 0.223·20-s − 0.436·21-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.784·26-s + 0.192·27-s − 0.377·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.391837219\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.391837219\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 + T \) |
good | 5 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + 5 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 - 3 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 9 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 13 T + p T^{2} \) |
| 67 | \( 1 - 13 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 16 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 + 5 T + p T^{2} \) |
| 97 | \( 1 - 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.581944822888227403253424096380, −9.043718502561435427567016078815, −7.980179118153069516022158507229, −7.14273558884352157405370540959, −6.17372340837701233463853408340, −5.67999357501247308290616366784, −4.33257580321924699251330751557, −3.53794942184716470982502852668, −2.68938573736263700447372124696, −1.39093487590051632703460554838,
1.39093487590051632703460554838, 2.68938573736263700447372124696, 3.53794942184716470982502852668, 4.33257580321924699251330751557, 5.67999357501247308290616366784, 6.17372340837701233463853408340, 7.14273558884352157405370540959, 7.980179118153069516022158507229, 9.043718502561435427567016078815, 9.581944822888227403253424096380