L(s) = 1 | + (−0.311 − 1.37i)2-s + (−1.36 + 1.06i)3-s + (−1.80 + 0.858i)4-s + (2.31 + 0.619i)5-s + (1.89 + 1.55i)6-s + (2.51 − 4.35i)7-s + (1.74 + 2.22i)8-s + (0.733 − 2.90i)9-s + (0.135 − 3.38i)10-s + (−1.03 + 0.276i)11-s + (1.55 − 3.09i)12-s + (4.00 + 1.07i)13-s + (−6.78 − 2.11i)14-s + (−3.81 + 1.61i)15-s + (2.52 − 3.10i)16-s + 2.22i·17-s + ⋯ |
L(s) = 1 | + (−0.219 − 0.975i)2-s + (−0.788 + 0.614i)3-s + (−0.903 + 0.429i)4-s + (1.03 + 0.276i)5-s + (0.773 + 0.634i)6-s + (0.949 − 1.64i)7-s + (0.617 + 0.786i)8-s + (0.244 − 0.969i)9-s + (0.0427 − 1.06i)10-s + (−0.310 + 0.0833i)11-s + (0.448 − 0.893i)12-s + (1.11 + 0.297i)13-s + (−1.81 − 0.564i)14-s + (−0.985 + 0.416i)15-s + (0.631 − 0.775i)16-s + 0.539i·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.561+0.827i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.561+0.827i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.561+0.827i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.561+0.827i)
|
Particular Values
L(1) |
≈ |
0.814223−0.431385i |
L(21) |
≈ |
0.814223−0.431385i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.311+1.37i)T |
| 3 | 1+(1.36−1.06i)T |
good | 5 | 1+(−2.31−0.619i)T+(4.33+2.5i)T2 |
| 7 | 1+(−2.51+4.35i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1.03−0.276i)T+(9.52−5.5i)T2 |
| 13 | 1+(−4.00−1.07i)T+(11.2+6.5i)T2 |
| 17 | 1−2.22iT−17T2 |
| 19 | 1+(0.697+0.697i)T+19iT2 |
| 23 | 1+(2.20−1.27i)T+(11.5−19.9i)T2 |
| 29 | 1+(−0.589+0.157i)T+(25.1−14.5i)T2 |
| 31 | 1+(−0.190+0.109i)T+(15.5−26.8i)T2 |
| 37 | 1+(5.16+5.16i)T+37iT2 |
| 41 | 1+(−0.828−1.43i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.33−4.98i)T+(−37.2+21.5i)T2 |
| 47 | 1+(5.76−9.98i)T+(−23.5−40.7i)T2 |
| 53 | 1+(7.80−7.80i)T−53iT2 |
| 59 | 1+(−1.36+5.09i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−1.73−6.48i)T+(−52.8+30.5i)T2 |
| 67 | 1+(2.20−8.22i)T+(−58.0−33.5i)T2 |
| 71 | 1+12.0iT−71T2 |
| 73 | 1+10.3iT−73T2 |
| 79 | 1+(−7.74−4.46i)T+(39.5+68.4i)T2 |
| 83 | 1+(1.48+5.55i)T+(−71.8+41.5i)T2 |
| 89 | 1−6.56T+89T2 |
| 97 | 1+(1.51−2.62i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.93396322858860133676261848423, −11.50938584840679905058223200292, −10.71364398875723499479179700824, −10.34465791025165582490065607032, −9.250918391333685031694772746360, −7.80680844718232791816409396685, −6.21283283513354489766254723161, −4.78245994375795329945535886328, −3.77942470064949970809569654358, −1.44451580822680463203449719550,
1.80525785726359857899404836537, 5.10199268679097318727039382328, 5.62010443532444529864040713584, 6.50746821732284909206105843456, 8.094190371730043670012922181964, 8.767292289752980243200875209820, 10.04663877188632171474014025840, 11.29975776470268052940488686879, 12.42137181706127097685327111899, 13.37204637004516186639832527266