L(s) = 1 | + (−0.311 + 1.37i)2-s + (−1.36 − 1.06i)3-s + (−1.80 − 0.858i)4-s + (2.31 − 0.619i)5-s + (1.89 − 1.55i)6-s + (2.51 + 4.35i)7-s + (1.74 − 2.22i)8-s + (0.733 + 2.90i)9-s + (0.135 + 3.38i)10-s + (−1.03 − 0.276i)11-s + (1.55 + 3.09i)12-s + (4.00 − 1.07i)13-s + (−6.78 + 2.11i)14-s + (−3.81 − 1.61i)15-s + (2.52 + 3.10i)16-s − 2.22i·17-s + ⋯ |
L(s) = 1 | + (−0.219 + 0.975i)2-s + (−0.788 − 0.614i)3-s + (−0.903 − 0.429i)4-s + (1.03 − 0.276i)5-s + (0.773 − 0.634i)6-s + (0.949 + 1.64i)7-s + (0.617 − 0.786i)8-s + (0.244 + 0.969i)9-s + (0.0427 + 1.06i)10-s + (−0.310 − 0.0833i)11-s + (0.448 + 0.893i)12-s + (1.11 − 0.297i)13-s + (−1.81 + 0.564i)14-s + (−0.985 − 0.416i)15-s + (0.631 + 0.775i)16-s − 0.539i·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.561−0.827i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.561−0.827i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.561−0.827i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.561−0.827i)
|
Particular Values
L(1) |
≈ |
0.814223+0.431385i |
L(21) |
≈ |
0.814223+0.431385i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.311−1.37i)T |
| 3 | 1+(1.36+1.06i)T |
good | 5 | 1+(−2.31+0.619i)T+(4.33−2.5i)T2 |
| 7 | 1+(−2.51−4.35i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.03+0.276i)T+(9.52+5.5i)T2 |
| 13 | 1+(−4.00+1.07i)T+(11.2−6.5i)T2 |
| 17 | 1+2.22iT−17T2 |
| 19 | 1+(0.697−0.697i)T−19iT2 |
| 23 | 1+(2.20+1.27i)T+(11.5+19.9i)T2 |
| 29 | 1+(−0.589−0.157i)T+(25.1+14.5i)T2 |
| 31 | 1+(−0.190−0.109i)T+(15.5+26.8i)T2 |
| 37 | 1+(5.16−5.16i)T−37iT2 |
| 41 | 1+(−0.828+1.43i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1.33+4.98i)T+(−37.2−21.5i)T2 |
| 47 | 1+(5.76+9.98i)T+(−23.5+40.7i)T2 |
| 53 | 1+(7.80+7.80i)T+53iT2 |
| 59 | 1+(−1.36−5.09i)T+(−51.0+29.5i)T2 |
| 61 | 1+(−1.73+6.48i)T+(−52.8−30.5i)T2 |
| 67 | 1+(2.20+8.22i)T+(−58.0+33.5i)T2 |
| 71 | 1−12.0iT−71T2 |
| 73 | 1−10.3iT−73T2 |
| 79 | 1+(−7.74+4.46i)T+(39.5−68.4i)T2 |
| 83 | 1+(1.48−5.55i)T+(−71.8−41.5i)T2 |
| 89 | 1−6.56T+89T2 |
| 97 | 1+(1.51+2.62i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.37204637004516186639832527266, −12.42137181706127097685327111899, −11.29975776470268052940488686879, −10.04663877188632171474014025840, −8.767292289752980243200875209820, −8.094190371730043670012922181964, −6.50746821732284909206105843456, −5.62010443532444529864040713584, −5.10199268679097318727039382328, −1.80525785726359857899404836537,
1.44451580822680463203449719550, 3.77942470064949970809569654358, 4.78245994375795329945535886328, 6.21283283513354489766254723161, 7.80680844718232791816409396685, 9.250918391333685031694772746360, 10.34465791025165582490065607032, 10.71364398875723499479179700824, 11.50938584840679905058223200292, 12.93396322858860133676261848423