L(s) = 1 | + (−4.5 + 2.59i)5-s + (−3.17 + 5.49i)7-s + (8.17 + 4.71i)11-s + (9.84 + 17.0i)13-s + 1.90i·17-s − 4.69·19-s + (−8.17 + 4.71i)23-s + (1 − 1.73i)25-s + (−2.84 − 1.64i)29-s + (20.5 + 35.5i)31-s − 32.9i·35-s − 17.3·37-s + (53.5 − 30.9i)41-s + (0.477 − 0.826i)43-s + (12.2 + 7.05i)47-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.519i)5-s + (−0.453 + 0.785i)7-s + (0.743 + 0.429i)11-s + (0.757 + 1.31i)13-s + 0.112i·17-s − 0.247·19-s + (−0.355 + 0.205i)23-s + (0.0400 − 0.0692i)25-s + (−0.0982 − 0.0567i)29-s + (0.662 + 1.14i)31-s − 0.942i·35-s − 0.467·37-s + (1.30 − 0.754i)41-s + (0.0110 − 0.0192i)43-s + (0.259 + 0.150i)47-s + ⋯ |
Λ(s)=(=(1728s/2ΓC(s)L(s)(−0.996−0.0825i)Λ(3−s)
Λ(s)=(=(1728s/2ΓC(s+1)L(s)(−0.996−0.0825i)Λ(1−s)
Degree: |
2 |
Conductor: |
1728
= 26⋅33
|
Sign: |
−0.996−0.0825i
|
Analytic conductor: |
47.0845 |
Root analytic conductor: |
6.86182 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1728(1601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1728, ( :1), −0.996−0.0825i)
|
Particular Values
L(23) |
≈ |
1.002064423 |
L(21) |
≈ |
1.002064423 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(4.5−2.59i)T+(12.5−21.6i)T2 |
| 7 | 1+(3.17−5.49i)T+(−24.5−42.4i)T2 |
| 11 | 1+(−8.17−4.71i)T+(60.5+104.i)T2 |
| 13 | 1+(−9.84−17.0i)T+(−84.5+146.i)T2 |
| 17 | 1−1.90iT−289T2 |
| 19 | 1+4.69T+361T2 |
| 23 | 1+(8.17−4.71i)T+(264.5−458.i)T2 |
| 29 | 1+(2.84+1.64i)T+(420.5+728.i)T2 |
| 31 | 1+(−20.5−35.5i)T+(−480.5+832.i)T2 |
| 37 | 1+17.3T+1.36e3T2 |
| 41 | 1+(−53.5+30.9i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−0.477+0.826i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−12.2−7.05i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1+9.53iT−2.80e3T2 |
| 59 | 1+(−79.2+45.7i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(37.5−65.0i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−15.4−26.8i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+85.9iT−5.04e3T2 |
| 73 | 1+96.0T+5.32e3T2 |
| 79 | 1+(14.8−25.7i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(76.1+43.9i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1−41.3iT−7.92e3T2 |
| 97 | 1+(47.9−83.0i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.259194048593712687149113751549, −8.899520608950360891105715732607, −7.947246411682917124997718494866, −6.98118695231615993984429084785, −6.51154284064419864179825496595, −5.58327428287216713753709257361, −4.28168045833499819299540584045, −3.77041957431160221570469650991, −2.67677052810280284563197267216, −1.49580066109554924616755529604,
0.31374660764053104110659780511, 1.09271089670763644727626470940, 2.85423161508242778806935909218, 3.87407344999795321826835196252, 4.26462106656825015524961676917, 5.57259696143950180652037805993, 6.32682482926181371060231435979, 7.26654241204159889011395763101, 8.085339873370891692572286424889, 8.531221518532827374158424288434