Properties

Label 1728.3.q.d.1601.1
Level 17281728
Weight 33
Character 1728.1601
Analytic conductor 47.08547.085
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,3,Mod(449,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 1728=2633 1728 = 2^{6} \cdot 3^{3}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1728.q (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 47.084589681547.0845896815
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Embedding invariants

Embedding label 1601.1
Root 1.224740.707107i1.22474 - 0.707107i of defining polynomial
Character χ\chi == 1728.1601
Dual form 1728.3.q.d.449.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(4.50000+2.59808i)q5+(3.17423+5.49794i)q7+(8.17423+4.71940i)q11+(9.84847+17.0580i)q13+1.90702iq174.69694q19+(8.17423+4.71940i)q23+(1.000001.73205i)q25+(2.848471.64456i)q29+(20.5227+35.5464i)q3132.9876iq3517.3031q37+(53.545430.9145i)q41+(0.4772960.826701i)q43+(12.2196+7.05501i)q47+(4.34847+7.53177i)q499.53512iq5349.0454q55+(79.265045.7637i)q59+(37.5454+65.0306i)q61+(88.636251.1741i)q65+(15.4773+26.8075i)q6785.9026iq7196.0908q73+(51.8939+29.9609i)q77+(14.8712+25.7576i)q79+(76.128843.9530i)q83+(4.954598.58161i)q85+41.3766iq89125.045q91+(21.136212.2030i)q95+(47.9393+83.0333i)q97+O(q100)q+(-4.50000 + 2.59808i) q^{5} +(-3.17423 + 5.49794i) q^{7} +(8.17423 + 4.71940i) q^{11} +(9.84847 + 17.0580i) q^{13} +1.90702i q^{17} -4.69694 q^{19} +(-8.17423 + 4.71940i) q^{23} +(1.00000 - 1.73205i) q^{25} +(-2.84847 - 1.64456i) q^{29} +(20.5227 + 35.5464i) q^{31} -32.9876i q^{35} -17.3031 q^{37} +(53.5454 - 30.9145i) q^{41} +(0.477296 - 0.826701i) q^{43} +(12.2196 + 7.05501i) q^{47} +(4.34847 + 7.53177i) q^{49} -9.53512i q^{53} -49.0454 q^{55} +(79.2650 - 45.7637i) q^{59} +(-37.5454 + 65.0306i) q^{61} +(-88.6362 - 51.1741i) q^{65} +(15.4773 + 26.8075i) q^{67} -85.9026i q^{71} -96.0908 q^{73} +(-51.8939 + 29.9609i) q^{77} +(-14.8712 + 25.7576i) q^{79} +(-76.1288 - 43.9530i) q^{83} +(-4.95459 - 8.58161i) q^{85} +41.3766i q^{89} -125.045 q^{91} +(21.1362 - 12.2030i) q^{95} +(-47.9393 + 83.0333i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q18q5+2q7+18q11+10q13+40q1918q23+4q25+18q29+38q31128q37+126q41+46q4354q4712q49108q55+126q5962q61++14q97+O(q100) 4 q - 18 q^{5} + 2 q^{7} + 18 q^{11} + 10 q^{13} + 40 q^{19} - 18 q^{23} + 4 q^{25} + 18 q^{29} + 38 q^{31} - 128 q^{37} + 126 q^{41} + 46 q^{43} - 54 q^{47} - 12 q^{49} - 108 q^{55} + 126 q^{59} - 62 q^{61}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1728Z)×\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times.

nn 325325 703703 12171217
χ(n)\chi(n) 11 11 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 −4.50000 + 2.59808i −0.900000 + 0.519615i −0.877200 0.480125i 0.840591π-0.840591\pi
−0.0227998 + 0.999740i 0.507258π0.507258\pi
66 0 0
77 −3.17423 + 5.49794i −0.453462 + 0.785419i −0.998598 0.0529281i 0.983145π-0.983145\pi
0.545136 + 0.838347i 0.316478π0.316478\pi
88 0 0
99 0 0
1010 0 0
1111 8.17423 + 4.71940i 0.743112 + 0.429036i 0.823200 0.567752i 0.192187π-0.192187\pi
−0.0800876 + 0.996788i 0.525520π0.525520\pi
1212 0 0
1313 9.84847 + 17.0580i 0.757575 + 1.31216i 0.944084 + 0.329704i 0.106949π0.106949\pi
−0.186510 + 0.982453i 0.559718π0.559718\pi
1414 0 0
1515 0 0
1616 0 0
1717 1.90702i 0.112178i 0.998426 + 0.0560889i 0.0178630π0.0178630\pi
−0.998426 + 0.0560889i 0.982137π0.982137\pi
1818 0 0
1919 −4.69694 −0.247207 −0.123604 0.992332i 0.539445π-0.539445\pi
−0.123604 + 0.992332i 0.539445π0.539445\pi
2020 0 0
2121 0 0
2222 0 0
2323 −8.17423 + 4.71940i −0.355402 + 0.205191i −0.667062 0.745002i 0.732448π-0.732448\pi
0.311660 + 0.950194i 0.399115π0.399115\pi
2424 0 0
2525 1.00000 1.73205i 0.0400000 0.0692820i
2626 0 0
2727 0 0
2828 0 0
2929 −2.84847 1.64456i −0.0982231 0.0567091i 0.450084 0.892986i 0.351394π-0.351394\pi
−0.548307 + 0.836277i 0.684727π0.684727\pi
3030 0 0
3131 20.5227 + 35.5464i 0.662023 + 1.14666i 0.980083 + 0.198587i 0.0636351π0.0636351\pi
−0.318061 + 0.948070i 0.603032π0.603032\pi
3232 0 0
3333 0 0
3434 0 0
3535 32.9876i 0.942503i
3636 0 0
3737 −17.3031 −0.467650 −0.233825 0.972279i 0.575124π-0.575124\pi
−0.233825 + 0.972279i 0.575124π0.575124\pi
3838 0 0
3939 0 0
4040 0 0
4141 53.5454 30.9145i 1.30599 0.754011i 0.324562 0.945864i 0.394783π-0.394783\pi
0.981424 + 0.191853i 0.0614498π0.0614498\pi
4242 0 0
4343 0.477296 0.826701i 0.0110999 0.0192256i −0.860422 0.509582i 0.829800π-0.829800\pi
0.871522 + 0.490356i 0.163133π0.163133\pi
4444 0 0
4545 0 0
4646 0 0
4747 12.2196 + 7.05501i 0.259992 + 0.150107i 0.624331 0.781160i 0.285372π-0.285372\pi
−0.364339 + 0.931267i 0.618705π0.618705\pi
4848 0 0
4949 4.34847 + 7.53177i 0.0887443 + 0.153710i
5050 0 0
5151 0 0
5252 0 0
5353 9.53512i 0.179908i −0.995946 0.0899539i 0.971328π-0.971328\pi
0.995946 0.0899539i 0.0286720π-0.0286720\pi
5454 0 0
5555 −49.0454 −0.891735
5656 0 0
5757 0 0
5858 0 0
5959 79.2650 45.7637i 1.34348 0.775656i 0.356160 0.934425i 0.384086π-0.384086\pi
0.987316 + 0.158769i 0.0507526π0.0507526\pi
6060 0 0
6161 −37.5454 + 65.0306i −0.615498 + 1.06607i 0.374798 + 0.927106i 0.377712π0.377712\pi
−0.990297 + 0.138968i 0.955621π0.955621\pi
6262 0 0
6363 0 0
6464 0 0
6565 −88.6362 51.1741i −1.36363 0.787295i
6666 0 0
6767 15.4773 + 26.8075i 0.231004 + 0.400111i 0.958104 0.286421i 0.0924655π-0.0924655\pi
−0.727100 + 0.686532i 0.759132π0.759132\pi
6868 0 0
6969 0 0
7070 0 0
7171 85.9026i 1.20990i −0.796265 0.604948i 0.793194π-0.793194\pi
0.796265 0.604948i 0.206806π-0.206806\pi
7272 0 0
7373 −96.0908 −1.31631 −0.658156 0.752881i 0.728663π-0.728663\pi
−0.658156 + 0.752881i 0.728663π0.728663\pi
7474 0 0
7575 0 0
7676 0 0
7777 −51.8939 + 29.9609i −0.673946 + 0.389103i
7878 0 0
7979 −14.8712 + 25.7576i −0.188243 + 0.326046i −0.944664 0.328038i 0.893612π-0.893612\pi
0.756422 + 0.654084i 0.226946π0.226946\pi
8080 0 0
8181 0 0
8282 0 0
8383 −76.1288 43.9530i −0.917215 0.529554i −0.0344693 0.999406i 0.510974π-0.510974\pi
−0.882745 + 0.469852i 0.844307π0.844307\pi
8484 0 0
8585 −4.95459 8.58161i −0.0582893 0.100960i
8686 0 0
8787 0 0
8888 0 0
8989 41.3766i 0.464905i 0.972608 + 0.232453i 0.0746751π0.0746751\pi
−0.972608 + 0.232453i 0.925325π0.925325\pi
9090 0 0
9191 −125.045 −1.37413
9292 0 0
9393 0 0
9494 0 0
9595 21.1362 12.2030i 0.222487 0.128453i
9696 0 0
9797 −47.9393 + 83.0333i −0.494219 + 0.856013i −0.999978 0.00666202i 0.997879π-0.997879\pi
0.505758 + 0.862675i 0.331213π0.331213\pi
9898 0 0
9999 0 0
100100 0 0
101101 −136.772 78.9656i −1.35418 0.781838i −0.365350 0.930870i 0.619051π-0.619051\pi
−0.988832 + 0.149032i 0.952384π0.952384\pi
102102 0 0
103103 −14.5681 25.2327i −0.141438 0.244978i 0.786600 0.617462i 0.211839π-0.211839\pi
−0.928038 + 0.372485i 0.878506π0.878506\pi
104104 0 0
105105 0 0
106106 0 0
107107 171.805i 1.60566i 0.596210 + 0.802829i 0.296673π0.296673\pi
−0.596210 + 0.802829i 0.703327π0.703327\pi
108108 0 0
109109 −116.272 −1.06672 −0.533360 0.845888i 0.679071π-0.679071\pi
−0.533360 + 0.845888i 0.679071π0.679071\pi
110110 0 0
111111 0 0
112112 0 0
113113 −175.166 + 101.132i −1.55014 + 0.894976i −0.552015 + 0.833834i 0.686141π0.686141\pi
−0.998129 + 0.0611424i 0.980526π0.980526\pi
114114 0 0
115115 24.5227 42.4746i 0.213241 0.369344i
116116 0 0
117117 0 0
118118 0 0
119119 −10.4847 6.05334i −0.0881067 0.0508684i
120120 0 0
121121 −15.9546 27.6342i −0.131856 0.228382i
122122 0 0
123123 0 0
124124 0 0
125125 119.512i 0.956092i
126126 0 0
127127 10.0908 0.0794552 0.0397276 0.999211i 0.487351π-0.487351\pi
0.0397276 + 0.999211i 0.487351π0.487351\pi
128128 0 0
129129 0 0
130130 0 0
131131 4.29567 2.48010i 0.0327913 0.0189321i −0.483515 0.875336i 0.660640π-0.660640\pi
0.516306 + 0.856404i 0.327307π0.327307\pi
132132 0 0
133133 14.9092 25.8235i 0.112099 0.194161i
134134 0 0
135135 0 0
136136 0 0
137137 −203.242 117.342i −1.48352 0.856511i −0.483696 0.875236i 0.660706π-0.660706\pi
−0.999825 + 0.0187249i 0.994039π0.994039\pi
138138 0 0
139139 53.2650 + 92.2578i 0.383202 + 0.663725i 0.991518 0.129970i 0.0414881π-0.0414881\pi
−0.608316 + 0.793695i 0.708155π0.708155\pi
140140 0 0
141141 0 0
142142 0 0
143143 185.915i 1.30011i
144144 0 0
145145 17.0908 0.117868
146146 0 0
147147 0 0
148148 0 0
149149 −91.0301 + 52.5563i −0.610940 + 0.352727i −0.773333 0.634000i 0.781412π-0.781412\pi
0.162393 + 0.986726i 0.448079π0.448079\pi
150150 0 0
151151 142.614 247.014i 0.944460 1.63585i 0.187632 0.982239i 0.439919π-0.439919\pi
0.756828 0.653614i 0.226748π-0.226748\pi
152152 0 0
153153 0 0
154154 0 0
155155 −184.704 106.639i −1.19164 0.687994i
156156 0 0
157157 −98.5908 170.764i −0.627967 1.08767i −0.987959 0.154715i 0.950554π-0.950554\pi
0.359992 0.932955i 0.382779π-0.382779\pi
158158 0 0
159159 0 0
160160 0 0
161161 59.9219i 0.372186i
162162 0 0
163163 249.060 1.52798 0.763988 0.645230i 0.223238π-0.223238\pi
0.763988 + 0.645230i 0.223238π0.223238\pi
164164 0 0
165165 0 0
166166 0 0
167167 41.9472 24.2182i 0.251181 0.145019i −0.369124 0.929380i 0.620342π-0.620342\pi
0.620305 + 0.784361i 0.287009π0.287009\pi
168168 0 0
169169 −109.485 + 189.633i −0.647838 + 1.12209i
170170 0 0
171171 0 0
172172 0 0
173173 86.9847 + 50.2206i 0.502802 + 0.290293i 0.729870 0.683586i 0.239581π-0.239581\pi
−0.227068 + 0.973879i 0.572914π0.572914\pi
174174 0 0
175175 6.34847 + 10.9959i 0.0362770 + 0.0628336i
176176 0 0
177177 0 0
178178 0 0
179179 285.071i 1.59257i 0.604919 + 0.796287i 0.293206π0.293206\pi
−0.604919 + 0.796287i 0.706794π0.706794\pi
180180 0 0
181181 −37.1214 −0.205091 −0.102545 0.994728i 0.532699π-0.532699\pi
−0.102545 + 0.994728i 0.532699π0.532699\pi
182182 0 0
183183 0 0
184184 0 0
185185 77.8638 44.9547i 0.420885 0.242998i
186186 0 0
187187 −9.00000 + 15.5885i −0.0481283 + 0.0833607i
188188 0 0
189189 0 0
190190 0 0
191191 15.5227 + 8.96204i 0.0812707 + 0.0469217i 0.540085 0.841611i 0.318392π-0.318392\pi
−0.458814 + 0.888532i 0.651726π0.651726\pi
192192 0 0
193193 47.7270 + 82.6657i 0.247290 + 0.428319i 0.962773 0.270311i 0.0871265π-0.0871265\pi
−0.715483 + 0.698630i 0.753793π0.753793\pi
194194 0 0
195195 0 0
196196 0 0
197197 160.363i 0.814026i −0.913422 0.407013i 0.866570π-0.866570\pi
0.913422 0.407013i 0.133430π-0.133430\pi
198198 0 0
199199 6.51531 0.0327402 0.0163701 0.999866i 0.494789π-0.494789\pi
0.0163701 + 0.999866i 0.494789π0.494789\pi
200200 0 0
201201 0 0
202202 0 0
203203 18.0834 10.4405i 0.0890809 0.0514309i
204204 0 0
205205 −160.636 + 278.230i −0.783591 + 1.35722i
206206 0 0
207207 0 0
208208 0 0
209209 −38.3939 22.1667i −0.183703 0.106061i
210210 0 0
211211 −77.2196 133.748i −0.365970 0.633878i 0.622961 0.782253i 0.285929π-0.285929\pi
−0.988931 + 0.148374i 0.952596π0.952596\pi
212212 0 0
213213 0 0
214214 0 0
215215 4.96021i 0.0230707i
216216 0 0
217217 −260.576 −1.20081
218218 0 0
219219 0 0
220220 0 0
221221 −32.5301 + 18.7813i −0.147195 + 0.0849831i
222222 0 0
223223 −46.3865 + 80.3437i −0.208011 + 0.360286i −0.951088 0.308920i 0.900032π-0.900032\pi
0.743077 + 0.669206i 0.233366π0.233366\pi
224224 0 0
225225 0 0
226226 0 0
227227 147.053 + 84.9010i 0.647810 + 0.374013i 0.787617 0.616166i 0.211315π-0.211315\pi
−0.139807 + 0.990179i 0.544648π0.544648\pi
228228 0 0
229229 203.772 + 352.944i 0.889836 + 1.54124i 0.840068 + 0.542480i 0.182515π0.182515\pi
0.0497675 + 0.998761i 0.484152π0.484152\pi
230230 0 0
231231 0 0
232232 0 0
233233 15.2562i 0.0654772i 0.999464 + 0.0327386i 0.0104229π0.0104229\pi
−0.999464 + 0.0327386i 0.989577π0.989577\pi
234234 0 0
235235 −73.3179 −0.311991
236236 0 0
237237 0 0
238238 0 0
239239 −48.9620 + 28.2682i −0.204862 + 0.118277i −0.598921 0.800808i 0.704404π-0.704404\pi
0.394059 + 0.919085i 0.371070π0.371070\pi
240240 0 0
241241 −42.1061 + 72.9299i −0.174714 + 0.302614i −0.940062 0.341003i 0.889233π-0.889233\pi
0.765348 + 0.643617i 0.222567π0.222567\pi
242242 0 0
243243 0 0
244244 0 0
245245 −39.1362 22.5953i −0.159740 0.0922258i
246246 0 0
247247 −46.2577 80.1206i −0.187278 0.324375i
248248 0 0
249249 0 0
250250 0 0
251251 218.903i 0.872123i −0.899917 0.436062i 0.856373π-0.856373\pi
0.899917 0.436062i 0.143627π-0.143627\pi
252252 0 0
253253 −89.0908 −0.352138
254254 0 0
255255 0 0
256256 0 0
257257 11.1061 6.41212i 0.0432145 0.0249499i −0.478237 0.878231i 0.658724π-0.658724\pi
0.521452 + 0.853281i 0.325391π0.325391\pi
258258 0 0
259259 54.9240 95.1311i 0.212062 0.367302i
260260 0 0
261261 0 0
262262 0 0
263263 −291.386 168.232i −1.10793 0.639666i −0.169640 0.985506i 0.554261π-0.554261\pi
−0.938293 + 0.345840i 0.887594π0.887594\pi
264264 0 0
265265 24.7730 + 42.9080i 0.0934829 + 0.161917i
266266 0 0
267267 0 0
268268 0 0
269269 60.4468i 0.224709i −0.993668 0.112355i 0.964161π-0.964161\pi
0.993668 0.112355i 0.0358393π-0.0358393\pi
270270 0 0
271271 274.636 1.01342 0.506708 0.862118i 0.330862π-0.330862\pi
0.506708 + 0.862118i 0.330862π0.330862\pi
272272 0 0
273273 0 0
274274 0 0
275275 16.3485 9.43879i 0.0594490 0.0343229i
276276 0 0
277277 −24.5000 + 42.4352i −0.0884477 + 0.153196i −0.906855 0.421442i 0.861524π-0.861524\pi
0.818407 + 0.574638i 0.194857π0.194857\pi
278278 0 0
279279 0 0
280280 0 0
281281 297.121 + 171.543i 1.05737 + 0.610473i 0.924704 0.380688i 0.124313π-0.124313\pi
0.132666 + 0.991161i 0.457646π0.457646\pi
282282 0 0
283283 −171.704 297.401i −0.606729 1.05089i −0.991776 0.127988i 0.959148π-0.959148\pi
0.385047 0.922897i 0.374185π-0.374185\pi
284284 0 0
285285 0 0
286286 0 0
287287 392.519i 1.36766i
288288 0 0
289289 285.363 0.987416
290290 0 0
291291 0 0
292292 0 0
293293 −248.076 + 143.226i −0.846674 + 0.488828i −0.859527 0.511090i 0.829242π-0.829242\pi
0.0128532 + 0.999917i 0.495909π0.495909\pi
294294 0 0
295295 −237.795 + 411.873i −0.806085 + 1.39618i
296296 0 0
297297 0 0
298298 0 0
299299 −161.007 92.9577i −0.538486 0.310895i
300300 0 0
301301 3.03010 + 5.24829i 0.0100668 + 0.0174362i
302302 0 0
303303 0 0
304304 0 0
305305 390.183i 1.27929i
306306 0 0
307307 −154.091 −0.501924 −0.250962 0.967997i 0.580747π-0.580747\pi
−0.250962 + 0.967997i 0.580747π0.580747\pi
308308 0 0
309309 0 0
310310 0 0
311311 62.3411 35.9926i 0.200454 0.115732i −0.396413 0.918072i 0.629745π-0.629745\pi
0.596867 + 0.802340i 0.296412π0.296412\pi
312312 0 0
313313 183.803 318.356i 0.587230 1.01711i −0.407363 0.913266i 0.633552π-0.633552\pi
0.994593 0.103846i 0.0331150π-0.0331150\pi
314314 0 0
315315 0 0
316316 0 0
317317 −93.1821 53.7987i −0.293950 0.169712i 0.345772 0.938319i 0.387617π-0.387617\pi
−0.639722 + 0.768607i 0.720950π0.720950\pi
318318 0 0
319319 −15.5227 26.8861i −0.0486605 0.0842825i
320320 0 0
321321 0 0
322322 0 0
323323 8.95717i 0.0277312i
324324 0 0
325325 39.3939 0.121212
326326 0 0
327327 0 0
328328 0 0
329329 −77.5760 + 44.7885i −0.235793 + 0.136135i
330330 0 0
331331 8.59873 14.8934i 0.0259780 0.0449953i −0.852744 0.522329i 0.825063π-0.825063\pi
0.878722 + 0.477334i 0.158397π0.158397\pi
332332 0 0
333333 0 0
334334 0 0
335335 −139.296 80.4224i −0.415808 0.240067i
336336 0 0
337337 −182.197 315.574i −0.540644 0.936422i −0.998867 0.0475854i 0.984847π-0.984847\pi
0.458223 0.888837i 0.348486π-0.348486\pi
338338 0 0
339339 0 0
340340 0 0
341341 387.419i 1.13613i
342342 0 0
343343 −366.287 −1.06789
344344 0 0
345345 0 0
346346 0 0
347347 505.234 291.697i 1.45601 0.840626i 0.457196 0.889366i 0.348854π-0.348854\pi
0.998811 + 0.0487402i 0.0155206π0.0155206\pi
348348 0 0
349349 156.379 270.856i 0.448076 0.776091i −0.550185 0.835043i 0.685443π-0.685443\pi
0.998261 + 0.0589524i 0.0187760π0.0187760\pi
350350 0 0
351351 0 0
352352 0 0
353353 32.5760 + 18.8078i 0.0922834 + 0.0532798i 0.545431 0.838155i 0.316366π-0.316366\pi
−0.453148 + 0.891435i 0.649699π0.649699\pi
354354 0 0
355355 223.182 + 386.562i 0.628681 + 1.08891i
356356 0 0
357357 0 0
358358 0 0
359359 294.028i 0.819019i −0.912306 0.409510i 0.865700π-0.865700\pi
0.912306 0.409510i 0.134300π-0.134300\pi
360360 0 0
361361 −338.939 −0.938889
362362 0 0
363363 0 0
364364 0 0
365365 432.409 249.651i 1.18468 0.683976i
366366 0 0
367367 16.6135 28.7755i 0.0452684 0.0784072i −0.842503 0.538691i 0.818919π-0.818919\pi
0.887772 + 0.460284i 0.152252π0.152252\pi
368368 0 0
369369 0 0
370370 0 0
371371 52.4235 + 30.2667i 0.141303 + 0.0815814i
372372 0 0
373373 −112.515 194.881i −0.301648 0.522470i 0.674861 0.737945i 0.264203π-0.264203\pi
−0.976509 + 0.215475i 0.930870π0.930870\pi
374374 0 0
375375 0 0
376376 0 0
377377 64.7858i 0.171846i
378378 0 0
379379 166.334 0.438875 0.219438 0.975627i 0.429578π-0.429578\pi
0.219438 + 0.975627i 0.429578π0.429578\pi
380380 0 0
381381 0 0
382382 0 0
383383 638.249 368.493i 1.66645 0.962124i 0.696917 0.717152i 0.254555π-0.254555\pi
0.969530 0.244972i 0.0787787π-0.0787787\pi
384384 0 0
385385 155.682 269.648i 0.404368 0.700386i
386386 0 0
387387 0 0
388388 0 0
389389 −146.682 84.6867i −0.377074 0.217704i 0.299471 0.954106i 0.403190π-0.403190\pi
−0.676544 + 0.736402i 0.736523π0.736523\pi
390390 0 0
391391 −9.00000 15.5885i −0.0230179 0.0398682i
392392 0 0
393393 0 0
394394 0 0
395395 154.546i 0.391255i
396396 0 0
397397 256.272 0.645523 0.322761 0.946480i 0.395389π-0.395389\pi
0.322761 + 0.946480i 0.395389π0.395389\pi
398398 0 0
399399 0 0
400400 0 0
401401 −226.364 + 130.691i −0.564498 + 0.325913i −0.754949 0.655784i 0.772338π-0.772338\pi
0.190451 + 0.981697i 0.439005π0.439005\pi
402402 0 0
403403 −404.234 + 700.155i −1.00306 + 1.73736i
404404 0 0
405405 0 0
406406 0 0
407407 −141.439 81.6600i −0.347517 0.200639i
408408 0 0
409409 221.894 + 384.331i 0.542528 + 0.939686i 0.998758 + 0.0498240i 0.0158660π0.0158660\pi
−0.456230 + 0.889862i 0.650801π0.650801\pi
410410 0 0
411411 0 0
412412 0 0
413413 581.059i 1.40692i
414414 0 0
415415 456.773 1.10066
416416 0 0
417417 0 0
418418 0 0
419419 9.32525 5.38394i 0.0222560 0.0128495i −0.488831 0.872379i 0.662576π-0.662576\pi
0.511087 + 0.859529i 0.329243π0.329243\pi
420420 0 0
421421 127.152 220.233i 0.302023 0.523119i −0.674571 0.738210i 0.735672π-0.735672\pi
0.976594 + 0.215091i 0.0690048π0.0690048\pi
422422 0 0
423423 0 0
424424 0 0
425425 3.30306 + 1.90702i 0.00777191 + 0.00448711i
426426 0 0
427427 −238.356 412.844i −0.558210 0.966849i
428428 0 0
429429 0 0
430430 0 0
431431 698.663i 1.62103i 0.585719 + 0.810514i 0.300812π0.300812\pi
−0.585719 + 0.810514i 0.699188π0.699188\pi
432432 0 0
433433 211.728 0.488978 0.244489 0.969652i 0.421380π-0.421380\pi
0.244489 + 0.969652i 0.421380π0.421380\pi
434434 0 0
435435 0 0
436436 0 0
437437 38.3939 22.1667i 0.0878578 0.0507247i
438438 0 0
439439 −139.931 + 242.368i −0.318750 + 0.552092i −0.980228 0.197874i 0.936596π-0.936596\pi
0.661477 + 0.749965i 0.269930π0.269930\pi
440440 0 0
441441 0 0
442442 0 0
443443 −477.400 275.627i −1.07765 0.622183i −0.147391 0.989078i 0.547087π-0.547087\pi
−0.930262 + 0.366895i 0.880421π0.880421\pi
444444 0 0
445445 −107.499 186.195i −0.241572 0.418415i
446446 0 0
447447 0 0
448448 0 0
449449 542.865i 1.20905i 0.796585 + 0.604527i 0.206638π0.206638\pi
−0.796585 + 0.604527i 0.793362π0.793362\pi
450450 0 0
451451 583.590 1.29399
452452 0 0
453453 0 0
454454 0 0
455455 562.704 324.877i 1.23671 0.714016i
456456 0 0
457457 −46.1821 + 79.9898i −0.101055 + 0.175032i −0.912120 0.409924i 0.865555π-0.865555\pi
0.811065 + 0.584957i 0.198888π0.198888\pi
458458 0 0
459459 0 0
460460 0 0
461461 −199.030 114.910i −0.431736 0.249263i 0.268350 0.963321i 0.413522π-0.413522\pi
−0.700086 + 0.714059i 0.746855π0.746855\pi
462462 0 0
463463 255.401 + 442.368i 0.551623 + 0.955438i 0.998158 + 0.0606723i 0.0193245π0.0193245\pi
−0.446535 + 0.894766i 0.647342π0.647342\pi
464464 0 0
465465 0 0
466466 0 0
467467 833.657i 1.78513i 0.450915 + 0.892567i 0.351098π0.351098\pi
−0.450915 + 0.892567i 0.648902π0.648902\pi
468468 0 0
469469 −196.514 −0.419007
470470 0 0
471471 0 0
472472 0 0
473473 7.80306 4.50510i 0.0164970 0.00952452i
474474 0 0
475475 −4.69694 + 8.13534i −0.00988829 + 0.0171270i
476476 0 0
477477 0 0
478478 0 0
479479 −569.144 328.595i −1.18819 0.686003i −0.230296 0.973121i 0.573969π-0.573969\pi
−0.957895 + 0.287118i 0.907303π0.907303\pi
480480 0 0
481481 −170.409 295.156i −0.354280 0.613631i
482482 0 0
483483 0 0
484484 0 0
485485 498.200i 1.02722i
486486 0 0
487487 −351.666 −0.722107 −0.361054 0.932545i 0.617583π-0.617583\pi
−0.361054 + 0.932545i 0.617583π0.617583\pi
488488 0 0
489489 0 0
490490 0 0
491491 212.539 122.709i 0.432869 0.249917i −0.267699 0.963503i 0.586263π-0.586263\pi
0.700568 + 0.713586i 0.252930π0.252930\pi
492492 0 0
493493 3.13622 5.43210i 0.00636151 0.0110185i
494494 0 0
495495 0 0
496496 0 0
497497 472.287 + 272.675i 0.950276 + 0.548642i
498498 0 0
499499 315.113 + 545.792i 0.631489 + 1.09377i 0.987247 + 0.159193i 0.0508892π0.0508892\pi
−0.355758 + 0.934578i 0.615777π0.615777\pi
500500 0 0
501501 0 0
502502 0 0
503503 286.891i 0.570360i 0.958474 + 0.285180i 0.0920534π0.0920534\pi
−0.958474 + 0.285180i 0.907947π0.907947\pi
504504 0 0
505505 820.635 1.62502
506506 0 0
507507 0 0
508508 0 0
509509 755.454 436.161i 1.48419 0.856898i 0.484353 0.874873i 0.339055π-0.339055\pi
0.999838 + 0.0179741i 0.00572163π0.00572163\pi
510510 0 0
511511 305.015 528.301i 0.596898 1.03386i
512512 0 0
513513 0 0
514514 0 0
515515 131.113 + 75.6981i 0.254588 + 0.146987i
516516 0 0
517517 66.5908 + 115.339i 0.128802 + 0.223092i
518518 0 0
519519 0 0
520520 0 0
521521 206.132i 0.395646i 0.980238 + 0.197823i 0.0633872π0.0633872\pi
−0.980238 + 0.197823i 0.936613π0.936613\pi
522522 0 0
523523 −884.817 −1.69181 −0.845906 0.533333i 0.820939π-0.820939\pi
−0.845906 + 0.533333i 0.820939π0.820939\pi
524524 0 0
525525 0 0
526526 0 0
527527 −67.7878 + 39.1373i −0.128630 + 0.0742643i
528528 0 0
529529 −219.955 + 380.973i −0.415793 + 0.720175i
530530 0 0
531531 0 0
532532 0 0
533533 1054.68 + 608.920i 1.97876 + 1.14244i
534534 0 0
535535 −446.363 773.124i −0.834324 1.44509i
536536 0 0
537537 0 0
538538 0 0
539539 82.0886i 0.152298i
540540 0 0
541541 509.151 0.941129 0.470565 0.882365i 0.344050π-0.344050\pi
0.470565 + 0.882365i 0.344050π0.344050\pi
542542 0 0
543543 0 0
544544 0 0
545545 523.226 302.085i 0.960048 0.554284i
546546 0 0
547547 274.022 474.620i 0.500955 0.867679i −0.499045 0.866576i 0.666316π-0.666316\pi
0.999999 0.00110267i 0.000350992π-0.000350992\pi
548548 0 0
549549 0 0
550550 0 0
551551 13.3791 + 7.72442i 0.0242815 + 0.0140189i
552552 0 0
553553 −94.4092 163.522i −0.170722 0.295699i
554554 0 0
555555 0 0
556556 0 0
557557 406.542i 0.729879i 0.931031 + 0.364939i 0.118910π0.118910\pi
−0.931031 + 0.364939i 0.881090π0.881090\pi
558558 0 0
559559 18.8025 0.0336360
560560 0 0
561561 0 0
562562 0 0
563563 −525.220 + 303.236i −0.932895 + 0.538607i −0.887726 0.460372i 0.847716π-0.847716\pi
−0.0451687 + 0.998979i 0.514383π0.514383\pi
564564 0 0
565565 525.499 910.191i 0.930087 1.61096i
566566 0 0
567567 0 0
568568 0 0
569569 224.954 + 129.877i 0.395350 + 0.228255i 0.684476 0.729036i 0.260031π-0.260031\pi
−0.289126 + 0.957291i 0.593365π0.593365\pi
570570 0 0
571571 −43.9166 76.0657i −0.0769117 0.133215i 0.825004 0.565126i 0.191173π-0.191173\pi
−0.901916 + 0.431911i 0.857839π0.857839\pi
572572 0 0
573573 0 0
574574 0 0
575575 18.8776i 0.0328306i
576576 0 0
577577 −132.091 −0.228927 −0.114463 0.993427i 0.536515π-0.536515\pi
−0.114463 + 0.993427i 0.536515π0.536515\pi
578578 0 0
579579 0 0
580580 0 0
581581 483.302 279.034i 0.831844 0.480266i
582582 0 0
583583 45.0000 77.9423i 0.0771870 0.133692i
584584 0 0
585585 0 0
586586 0 0
587587 −491.614 283.833i −0.837502 0.483532i 0.0189125 0.999821i 0.493980π-0.493980\pi
−0.856414 + 0.516289i 0.827313π0.827313\pi
588588 0 0
589589 −96.3939 166.959i −0.163657 0.283462i
590590 0 0
591591 0 0
592592 0 0
593593 77.0321i 0.129902i −0.997888 0.0649512i 0.979311π-0.979311\pi
0.997888 0.0649512i 0.0206892π-0.0206892\pi
594594 0 0
595595 62.9082 0.105728
596596 0 0
597597 0 0
598598 0 0
599599 764.917 441.625i 1.27699 0.737270i 0.300696 0.953720i 0.402781π-0.402781\pi
0.976294 + 0.216450i 0.0694479π0.0694479\pi
600600 0 0
601601 397.545 688.569i 0.661473 1.14571i −0.318755 0.947837i 0.603265π-0.603265\pi
0.980229 0.197868i 0.0634018π-0.0634018\pi
602602 0 0
603603 0 0
604604 0 0
605605 143.591 + 82.9025i 0.237341 + 0.137029i
606606 0 0
607607 148.372 + 256.987i 0.244434 + 0.423373i 0.961972 0.273147i 0.0880644π-0.0880644\pi
−0.717538 + 0.696519i 0.754731π0.754731\pi
608608 0 0
609609 0 0
610610 0 0
611611 277.924i 0.454868i
612612 0 0
613613 517.181 0.843688 0.421844 0.906668i 0.361383π-0.361383\pi
0.421844 + 0.906668i 0.361383π0.361383\pi
614614 0 0
615615 0 0
616616 0 0
617617 229.909 132.738i 0.372623 0.215134i −0.301981 0.953314i 0.597648π-0.597648\pi
0.674604 + 0.738180i 0.264314π0.264314\pi
618618 0 0
619619 −98.5227 + 170.646i −0.159164 + 0.275681i −0.934568 0.355786i 0.884213π-0.884213\pi
0.775403 + 0.631466i 0.217547π0.217547\pi
620620 0 0
621621 0 0
622622 0 0
623623 −227.486 131.339i −0.365146 0.210817i
624624 0 0
625625 335.500 + 581.103i 0.536800 + 0.929765i
626626 0 0
627627 0 0
628628 0 0
629629 32.9973i 0.0524600i
630630 0 0
631631 −160.879 −0.254958 −0.127479 0.991841i 0.540689π-0.540689\pi
−0.127479 + 0.991841i 0.540689π0.540689\pi
632632 0 0
633633 0 0
634634 0 0
635635 −45.4087 + 26.2167i −0.0715097 + 0.0412862i
636636 0 0
637637 −85.6515 + 148.353i −0.134461 + 0.232893i
638638 0 0
639639 0 0
640640 0 0
641641 267.894 + 154.669i 0.417931 + 0.241293i 0.694192 0.719790i 0.255762π-0.255762\pi
−0.276261 + 0.961083i 0.589095π0.589095\pi
642642 0 0
643643 197.296 + 341.726i 0.306836 + 0.531456i 0.977668 0.210153i 0.0673963π-0.0673963\pi
−0.670832 + 0.741609i 0.734063π0.734063\pi
644644 0 0
645645 0 0
646646 0 0
647647 418.736i 0.647196i 0.946195 + 0.323598i 0.104892π0.104892\pi
−0.946195 + 0.323598i 0.895108π0.895108\pi
648648 0 0
649649 863.908 1.33114
650650 0 0
651651 0 0
652652 0 0
653653 −459.621 + 265.363i −0.703861 + 0.406375i −0.808784 0.588106i 0.799874π-0.799874\pi
0.104923 + 0.994480i 0.466540π0.466540\pi
654654 0 0
655655 −12.8870 + 22.3209i −0.0196748 + 0.0340778i
656656 0 0
657657 0 0
658658 0 0
659659 310.204 + 179.096i 0.470719 + 0.271770i 0.716541 0.697545i 0.245724π-0.245724\pi
−0.245822 + 0.969315i 0.579058π0.579058\pi
660660 0 0
661661 −111.136 192.493i −0.168133 0.291214i 0.769631 0.638489i 0.220440π-0.220440\pi
−0.937763 + 0.347275i 0.887107π0.887107\pi
662662 0 0
663663 0 0
664664 0 0
665665 154.941i 0.232994i
666666 0 0
667667 31.0454 0.0465448
668668 0 0
669669 0 0
670670 0 0
671671 −613.810 + 354.383i −0.914769 + 0.528142i
672672 0 0
673673 144.606 250.464i 0.214867 0.372161i −0.738364 0.674402i 0.764401π-0.764401\pi
0.953231 + 0.302241i 0.0977348π0.0977348\pi
674674 0 0
675675 0 0
676676 0 0
677677 402.227 + 232.226i 0.594131 + 0.343022i 0.766729 0.641971i 0.221883π-0.221883\pi
−0.172598 + 0.984992i 0.555216π0.555216\pi
678678 0 0
679679 −304.341 527.134i −0.448220 0.776339i
680680 0 0
681681 0 0
682682 0 0
683683 1126.36i 1.64913i −0.565767 0.824565i 0.691420π-0.691420\pi
0.565767 0.824565i 0.308580π-0.308580\pi
684684 0 0
685685 1219.45 1.78022
686686 0 0
687687 0 0
688688 0 0
689689 162.650 93.9063i 0.236067 0.136294i
690690 0 0
691691 518.841 898.658i 0.750855 1.30052i −0.196554 0.980493i 0.562975π-0.562975\pi
0.947409 0.320025i 0.103691π-0.103691\pi
692692 0 0
693693 0 0
694694 0 0
695695 −479.385 276.773i −0.689763 0.398235i
696696 0 0
697697 58.9546 + 102.112i 0.0845833 + 0.146503i
698698 0 0
699699 0 0
700700 0 0
701701 778.180i 1.11010i 0.831817 + 0.555050i 0.187301π0.187301\pi
−0.831817 + 0.555050i 0.812699π0.812699\pi
702702 0 0
703703 81.2714 0.115607
704704 0 0
705705 0 0
706706 0 0
707707 868.296 501.311i 1.22814 0.709068i
708708 0 0
709709 −586.014 + 1015.01i −0.826536 + 1.43160i 0.0742031 + 0.997243i 0.476359π0.476359\pi
−0.900739 + 0.434360i 0.856975π0.856975\pi
710710 0 0
711711 0 0
712712 0 0
713713 −335.515 193.710i −0.470568 0.271682i
714714 0 0
715715 −483.022 836.619i −0.675556 1.17010i
716716 0 0
717717 0 0
718718 0 0
719719 515.416i 0.716851i 0.933558 + 0.358426i 0.116686π0.116686\pi
−0.933558 + 0.358426i 0.883314π0.883314\pi
720720 0 0
721721 184.970 0.256547
722722 0 0
723723 0 0
724724 0 0
725725 −5.69694 + 3.28913i −0.00785785 + 0.00453673i
726726 0 0
727727 420.704 728.681i 0.578685 1.00231i −0.416945 0.908932i 0.636899π-0.636899\pi
0.995630 0.0933809i 0.0297674π-0.0297674\pi
728728 0 0
729729 0 0
730730 0 0
731731 1.57654 + 0.910215i 0.00215669 + 0.00124516i
732732 0 0
733733 303.181 + 525.125i 0.413617 + 0.716405i 0.995282 0.0970229i 0.0309320π-0.0309320\pi
−0.581665 + 0.813428i 0.697599π0.697599\pi
734734 0 0
735735 0 0
736736 0 0
737737 292.174i 0.396437i
738738 0 0
739739 389.362 0.526877 0.263439 0.964676i 0.415143π-0.415143\pi
0.263439 + 0.964676i 0.415143π0.415143\pi
740740 0 0
741741 0 0
742742 0 0
743743 −904.779 + 522.375i −1.21774 + 0.703061i −0.964434 0.264325i 0.914851π-0.914851\pi
−0.253304 + 0.967387i 0.581517π0.581517\pi
744744 0 0
745745 273.090 473.006i 0.366564 0.634908i
746746 0 0
747747 0 0
748748 0 0
749749 −944.574 545.350i −1.26111 0.728105i
750750 0 0
751751 645.916 + 1118.76i 0.860074 + 1.48969i 0.871857 + 0.489761i 0.162916π0.162916\pi
−0.0117826 + 0.999931i 0.503751π0.503751\pi
752752 0 0
753753 0 0
754754 0 0
755755 1482.08i 1.96302i
756756 0 0
757757 −1042.36 −1.37697 −0.688483 0.725252i 0.741723π-0.741723\pi
−0.688483 + 0.725252i 0.741723π0.741723\pi
758758 0 0
759759 0 0
760760 0 0
761761 281.607 162.586i 0.370048 0.213647i −0.303431 0.952853i 0.598132π-0.598132\pi
0.673479 + 0.739206i 0.264799π0.264799\pi
762762 0 0
763763 369.076 639.258i 0.483717 0.837822i
764764 0 0
765765 0 0
766766 0 0
767767 1561.28 + 901.405i 2.03557 + 1.17523i
768768 0 0
769769 −171.348 296.783i −0.222819 0.385934i 0.732844 0.680397i 0.238193π-0.238193\pi
−0.955663 + 0.294463i 0.904859π0.904859\pi
770770 0 0
771771 0 0
772772 0 0
773773 532.579i 0.688977i −0.938791 0.344488i 0.888052π-0.888052\pi
0.938791 0.344488i 0.111948π-0.111948\pi
774774 0 0
775775 82.0908 0.105924
776776 0 0
777777 0 0
778778 0 0
779779 −251.499 + 145.203i −0.322849 + 0.186397i
780780 0 0
781781 405.409 702.188i 0.519089 0.899089i
782782 0 0
783783 0 0
784784 0 0
785785 887.317 + 512.293i 1.13034 + 0.652602i
786786 0 0
787787 −51.9768 90.0264i −0.0660442 0.114392i 0.831113 0.556104i 0.187704π-0.187704\pi
−0.897157 + 0.441712i 0.854371π0.854371\pi
788788 0 0
789789 0 0
790790 0 0
791791 1284.07i 1.62335i
792792 0 0
793793 −1479.06 −1.86514
794794 0 0
795795 0 0
796796 0 0
797797 −956.331 + 552.138i −1.19991 + 0.692770i −0.960536 0.278156i 0.910277π-0.910277\pi
−0.239378 + 0.970927i 0.576943π0.576943\pi
798798 0 0
799799 −13.4541 + 23.3031i −0.0168386 + 0.0291654i
800800 0 0
801801 0 0
802802 0 0
803803 −785.469 453.491i −0.978168 0.564746i
804804 0 0
805805 155.682 + 269.648i 0.193393 + 0.334967i
806806 0 0
807807 0 0
808808 0 0
809809 256.465i 0.317015i 0.987358 + 0.158508i 0.0506683π0.0506683\pi
−0.987358 + 0.158508i 0.949332π0.949332\pi
810810 0 0
811811 −735.362 −0.906735 −0.453368 0.891324i 0.649778π-0.649778\pi
−0.453368 + 0.891324i 0.649778π0.649778\pi
812812 0 0
813813 0 0
814814 0 0
815815 −1120.77 + 647.077i −1.37518 + 0.793960i
816816 0 0
817817 −2.24183 + 3.88296i −0.00274398 + 0.00475271i
818818 0 0
819819 0 0
820820 0 0
821821 1078.45 + 622.645i 1.31358 + 0.758398i 0.982688 0.185269i 0.0593157π-0.0593157\pi
0.330896 + 0.943667i 0.392649π0.392649\pi
822822 0 0
823823 771.129 + 1335.63i 0.936973 + 1.62288i 0.771077 + 0.636742i 0.219718π0.219718\pi
0.165896 + 0.986143i 0.446948π0.446948\pi
824824 0 0
825825 0 0
826826 0 0
827827 955.707i 1.15563i 0.816167 + 0.577815i 0.196095π0.196095\pi
−0.816167 + 0.577815i 0.803905π0.803905\pi
828828 0 0
829829 −1082.88 −1.30625 −0.653123 0.757252i 0.726542π-0.726542\pi
−0.653123 + 0.757252i 0.726542π0.726542\pi
830830 0 0
831831 0 0
832832 0 0
833833 −14.3633 + 8.29263i −0.0172428 + 0.00995514i
834834 0 0
835835 −125.842 + 217.964i −0.150708 + 0.261035i
836836 0 0
837837 0 0
838838 0 0
839839 −903.778 521.797i −1.07721 0.621927i −0.147067 0.989127i 0.546983π-0.546983\pi
−0.930142 + 0.367200i 0.880317π0.880317\pi
840840 0 0
841841 −415.091 718.958i −0.493568 0.854885i
842842 0 0
843843 0 0
844844 0 0
845845 1137.80i 1.34651i
846846 0 0
847847 202.574 0.239167
848848 0 0
849849 0 0
850850 0 0
851851 141.439 81.6600i 0.166204 0.0959577i
852852 0 0
853853 236.909 410.338i 0.277736 0.481053i −0.693086 0.720855i 0.743749π-0.743749\pi
0.970822 + 0.239802i 0.0770827π0.0770827\pi
854854 0 0
855855 0 0
856856 0 0
857857 −793.939 458.381i −0.926417 0.534867i −0.0407403 0.999170i 0.512972π-0.512972\pi
−0.885677 + 0.464303i 0.846305π0.846305\pi
858858 0 0
859859 478.901 + 829.480i 0.557510 + 0.965635i 0.997704 + 0.0677322i 0.0215764π0.0215764\pi
−0.440194 + 0.897903i 0.645090π0.645090\pi
860860 0 0
861861 0 0
862862 0 0
863863 524.200i 0.607416i 0.952765 + 0.303708i 0.0982247π0.0982247\pi
−0.952765 + 0.303708i 0.901775π0.901775\pi
864864 0 0
865865 −521.908 −0.603362
866866 0 0
867867 0 0
868868 0 0
869869 −243.121 + 140.366i −0.279771 + 0.161526i
870870 0 0
871871 −304.855 + 528.025i −0.350006 + 0.606228i
872872 0 0
873873 0 0
874874 0 0
875875 657.067 + 379.358i 0.750933 + 0.433551i
876876 0 0
877877 503.878 + 872.742i 0.574547 + 0.995145i 0.996091 + 0.0883370i 0.0281552π0.0281552\pi
−0.421543 + 0.906808i 0.638511π0.638511\pi
878878 0 0
879879 0 0
880880 0 0
881881 1536.71i 1.74428i −0.489254 0.872141i 0.662731π-0.662731\pi
0.489254 0.872141i 0.337269π-0.337269\pi
882882 0 0
883883 294.213 0.333197 0.166599 0.986025i 0.446722π-0.446722\pi
0.166599 + 0.986025i 0.446722π0.446722\pi
884884 0 0
885885 0 0
886886 0 0
887887 497.794 287.402i 0.561211 0.324015i −0.192420 0.981313i 0.561634π-0.561634\pi
0.753631 + 0.657297i 0.228300π0.228300\pi
888888 0 0
889889 −32.0306 + 55.4787i −0.0360299 + 0.0624057i
890890 0 0
891891 0 0
892892 0 0
893893 −57.3949 33.1370i −0.0642720 0.0371075i
894894 0 0
895895 −740.636 1282.82i −0.827526 1.43332i
896896 0 0
897897 0 0
898898 0 0
899899 135.004i 0.150171i
900900 0 0
901901 18.1837 0.0201817
902902 0 0
903903 0 0
904904 0 0
905905 167.046 96.4443i 0.184582 0.106568i
906906 0 0
907907 −255.037 + 441.737i −0.281187 + 0.487031i −0.971677 0.236311i 0.924062π-0.924062\pi
0.690490 + 0.723342i 0.257395π0.257395\pi
908908 0 0
909909 0 0
910910 0 0
911911 803.127 + 463.685i 0.881588 + 0.508985i 0.871182 0.490961i 0.163354π-0.163354\pi
0.0104064 + 0.999946i 0.496687π0.496687\pi
912912 0 0
913913 −414.863 718.564i −0.454396 0.787036i
914914 0 0
915915 0 0
916916 0 0
917917 31.4897i 0.0343399i
918918 0 0
919919 −1240.63 −1.34998 −0.674991 0.737826i 0.735853π-0.735853\pi
−0.674991 + 0.737826i 0.735853π0.735853\pi
920920 0 0
921921 0 0
922922 0 0
923923 1465.33 846.010i 1.58757 0.916587i
924924 0 0
925925 −17.3031 + 29.9698i −0.0187060 + 0.0323998i
926926 0 0
927927 0 0
928928 0 0
929929 −293.576 169.496i −0.316013 0.182450i 0.333601 0.942714i 0.391736π-0.391736\pi
−0.649614 + 0.760264i 0.725069π0.725069\pi
930930 0 0
931931 −20.4245 35.3763i −0.0219382 0.0379981i
932932 0 0
933933 0 0
934934 0 0
935935 93.5307i 0.100033i
936936 0 0
937937 1322.21 1.41111 0.705556 0.708655i 0.250698π-0.250698\pi
0.705556 + 0.708655i 0.250698π0.250698\pi
938938 0 0
939939 0 0
940940 0 0
941941 −310.984 + 179.547i −0.330482 + 0.190804i −0.656055 0.754713i 0.727776π-0.727776\pi
0.325573 + 0.945517i 0.394443π0.394443\pi
942942 0 0
943943 −291.795 + 505.404i −0.309433 + 0.535953i
944944 0 0
945945 0 0
946946 0 0
947947 −671.855 387.896i −0.709457 0.409605i 0.101403 0.994845i 0.467667π-0.467667\pi
−0.810860 + 0.585240i 0.801000π0.801000\pi
948948 0 0
949949 −946.347 1639.12i −0.997205 1.72721i
950950 0 0
951951 0 0
952952 0 0
953953 465.082i 0.488019i 0.969773 + 0.244010i 0.0784628π0.0784628\pi
−0.969773 + 0.244010i 0.921537π0.921537\pi
954954 0 0
955955 −93.1362 −0.0975248
956956 0 0
957957 0 0
958958 0 0
959959 1290.28 744.942i 1.34544 0.776791i
960960 0 0
961961 −361.863 + 626.765i −0.376548 + 0.652200i
962962 0 0
963963 0 0
964964 0 0
965965 −429.543 247.997i −0.445123 0.256992i
966966 0 0
967967 −612.113 1060.21i −0.633002 1.09639i −0.986935 0.161121i 0.948489π-0.948489\pi
0.353933 0.935271i 0.384844π-0.384844\pi
968968 0 0
969969 0 0
970970 0 0
971971 658.702i 0.678375i −0.940719 0.339188i 0.889848π-0.889848\pi
0.940719 0.339188i 0.110152π-0.110152\pi
972972 0 0
973973 −676.303 −0.695070
974974 0 0
975975 0 0
976976 0 0
977977 −1314.92 + 759.170i −1.34588 + 0.777042i −0.987663 0.156597i 0.949948π-0.949948\pi
−0.358214 + 0.933639i 0.616614π0.616614\pi
978978 0 0
979979 −195.272 + 338.222i −0.199461 + 0.345477i
980980 0 0
981981 0 0
982982 0 0
983983 −716.930 413.920i −0.729329 0.421078i 0.0888477 0.996045i 0.471682π-0.471682\pi
−0.818177 + 0.574967i 0.805015π0.805015\pi
984984 0 0
985985 416.636 + 721.634i 0.422980 + 0.732624i
986986 0 0
987987 0 0
988988 0 0
989989 9.01020i 0.00911041i
990990 0 0
991991 429.546 0.433447 0.216723 0.976233i 0.430463π-0.430463\pi
0.216723 + 0.976233i 0.430463π0.430463\pi
992992 0 0
993993 0 0
994994 0 0
995995 −29.3189 + 16.9273i −0.0294662 + 0.0170123i
996996 0 0
997997 −347.499 + 601.886i −0.348545 + 0.603697i −0.985991 0.166798i 0.946657π-0.946657\pi
0.637447 + 0.770495i 0.279991π0.279991\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.q.d.1601.1 4
3.2 odd 2 576.3.q.f.65.1 4
4.3 odd 2 1728.3.q.c.1601.2 4
8.3 odd 2 432.3.q.d.305.2 4
8.5 even 2 54.3.d.a.35.2 4
9.4 even 3 576.3.q.f.257.1 4
9.5 odd 6 inner 1728.3.q.d.449.1 4
12.11 even 2 576.3.q.e.65.2 4
24.5 odd 2 18.3.d.a.11.1 yes 4
24.11 even 2 144.3.q.c.65.1 4
36.23 even 6 1728.3.q.c.449.2 4
36.31 odd 6 576.3.q.e.257.2 4
40.13 odd 4 1350.3.k.a.899.3 8
40.29 even 2 1350.3.i.b.251.1 4
40.37 odd 4 1350.3.k.a.899.2 8
72.5 odd 6 54.3.d.a.17.2 4
72.11 even 6 1296.3.e.g.161.1 4
72.13 even 6 18.3.d.a.5.1 4
72.29 odd 6 162.3.b.a.161.3 4
72.43 odd 6 1296.3.e.g.161.3 4
72.59 even 6 432.3.q.d.17.2 4
72.61 even 6 162.3.b.a.161.2 4
72.67 odd 6 144.3.q.c.113.1 4
120.29 odd 2 450.3.i.b.101.2 4
120.53 even 4 450.3.k.a.299.2 8
120.77 even 4 450.3.k.a.299.3 8
360.13 odd 12 450.3.k.a.149.3 8
360.77 even 12 1350.3.k.a.449.3 8
360.149 odd 6 1350.3.i.b.1151.1 4
360.157 odd 12 450.3.k.a.149.2 8
360.229 even 6 450.3.i.b.401.2 4
360.293 even 12 1350.3.k.a.449.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.3.d.a.5.1 4 72.13 even 6
18.3.d.a.11.1 yes 4 24.5 odd 2
54.3.d.a.17.2 4 72.5 odd 6
54.3.d.a.35.2 4 8.5 even 2
144.3.q.c.65.1 4 24.11 even 2
144.3.q.c.113.1 4 72.67 odd 6
162.3.b.a.161.2 4 72.61 even 6
162.3.b.a.161.3 4 72.29 odd 6
432.3.q.d.17.2 4 72.59 even 6
432.3.q.d.305.2 4 8.3 odd 2
450.3.i.b.101.2 4 120.29 odd 2
450.3.i.b.401.2 4 360.229 even 6
450.3.k.a.149.2 8 360.157 odd 12
450.3.k.a.149.3 8 360.13 odd 12
450.3.k.a.299.2 8 120.53 even 4
450.3.k.a.299.3 8 120.77 even 4
576.3.q.e.65.2 4 12.11 even 2
576.3.q.e.257.2 4 36.31 odd 6
576.3.q.f.65.1 4 3.2 odd 2
576.3.q.f.257.1 4 9.4 even 3
1296.3.e.g.161.1 4 72.11 even 6
1296.3.e.g.161.3 4 72.43 odd 6
1350.3.i.b.251.1 4 40.29 even 2
1350.3.i.b.1151.1 4 360.149 odd 6
1350.3.k.a.449.2 8 360.293 even 12
1350.3.k.a.449.3 8 360.77 even 12
1350.3.k.a.899.2 8 40.37 odd 4
1350.3.k.a.899.3 8 40.13 odd 4
1728.3.q.c.449.2 4 36.23 even 6
1728.3.q.c.1601.2 4 4.3 odd 2
1728.3.q.d.449.1 4 9.5 odd 6 inner
1728.3.q.d.1601.1 4 1.1 even 1 trivial