Properties

Label 1350.3.k.a.449.2
Level $1350$
Weight $3$
Character 1350.449
Analytic conductor $36.785$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,3,Mod(449,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1350.449
Dual form 1350.3.k.a.899.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-5.49794 + 3.17423i) q^{7} +2.82843 q^{8} +O(q^{10})\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-5.49794 + 3.17423i) q^{7} +2.82843 q^{8} +(-8.17423 + 4.71940i) q^{11} +(-17.0580 - 9.84847i) q^{13} +(7.77526 + 4.48905i) q^{14} +(-2.00000 - 3.46410i) q^{16} -1.90702 q^{17} -4.69694 q^{19} +(11.5601 + 6.67423i) q^{22} +(4.71940 - 8.17423i) q^{23} +27.8557i q^{26} -12.6969i q^{28} +(-2.84847 + 1.64456i) q^{29} +(20.5227 - 35.5464i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(1.34847 + 2.33562i) q^{34} -17.3031i q^{37} +(3.32124 + 5.75255i) q^{38} +(53.5454 + 30.9145i) q^{41} +(0.826701 - 0.477296i) q^{43} -18.8776i q^{44} -13.3485 q^{46} +(-7.05501 - 12.2196i) q^{47} +(-4.34847 + 7.53177i) q^{49} +(34.1161 - 19.6969i) q^{52} +9.53512 q^{53} +(-15.5505 + 8.97809i) q^{56} +(4.02834 + 2.32577i) q^{58} +(79.2650 + 45.7637i) q^{59} +(37.5454 + 65.0306i) q^{61} -58.0470 q^{62} +8.00000 q^{64} +(26.8075 + 15.4773i) q^{67} +(1.90702 - 3.30306i) q^{68} +85.9026i q^{71} -96.0908i q^{73} +(-21.1918 + 12.2351i) q^{74} +(4.69694 - 8.13534i) q^{76} +(29.9609 - 51.8939i) q^{77} +(14.8712 + 25.7576i) q^{79} -87.4393i q^{82} +(43.9530 + 76.1288i) q^{83} +(-1.16913 - 0.674999i) q^{86} +(-23.1202 + 13.3485i) q^{88} +41.3766i q^{89} +125.045 q^{91} +(9.43879 + 16.3485i) q^{92} +(-9.97730 + 17.2812i) q^{94} +(-83.0333 + 47.9393i) q^{97} +12.2993 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 36 q^{11} + 72 q^{14} - 16 q^{16} + 80 q^{19} + 36 q^{29} + 76 q^{31} - 48 q^{34} + 252 q^{41} - 48 q^{46} + 24 q^{49} - 144 q^{56} + 252 q^{59} + 124 q^{61} + 64 q^{64} + 144 q^{74} - 80 q^{76} - 28 q^{79} + 216 q^{86} + 824 q^{91} - 168 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −5.49794 + 3.17423i −0.785419 + 0.453462i −0.838347 0.545136i \(-0.816478\pi\)
0.0529281 + 0.998598i \(0.483145\pi\)
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −8.17423 + 4.71940i −0.743112 + 0.429036i −0.823200 0.567752i \(-0.807813\pi\)
0.0800876 + 0.996788i \(0.474480\pi\)
\(12\) 0 0
\(13\) −17.0580 9.84847i −1.31216 0.757575i −0.329704 0.944084i \(-0.606949\pi\)
−0.982453 + 0.186510i \(0.940282\pi\)
\(14\) 7.77526 + 4.48905i 0.555375 + 0.320646i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −1.90702 −0.112178 −0.0560889 0.998426i \(-0.517863\pi\)
−0.0560889 + 0.998426i \(0.517863\pi\)
\(18\) 0 0
\(19\) −4.69694 −0.247207 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.5601 + 6.67423i 0.525460 + 0.303374i
\(23\) 4.71940 8.17423i 0.205191 0.355402i −0.745002 0.667062i \(-0.767552\pi\)
0.950194 + 0.311660i \(0.100885\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 27.8557i 1.07137i
\(27\) 0 0
\(28\) 12.6969i 0.453462i
\(29\) −2.84847 + 1.64456i −0.0982231 + 0.0567091i −0.548307 0.836277i \(-0.684727\pi\)
0.450084 + 0.892986i \(0.351394\pi\)
\(30\) 0 0
\(31\) 20.5227 35.5464i 0.662023 1.14666i −0.318061 0.948070i \(-0.603032\pi\)
0.980083 0.198587i \(-0.0636351\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.34847 + 2.33562i 0.0396609 + 0.0686946i
\(35\) 0 0
\(36\) 0 0
\(37\) 17.3031i 0.467650i −0.972279 0.233825i \(-0.924876\pi\)
0.972279 0.233825i \(-0.0751243\pi\)
\(38\) 3.32124 + 5.75255i 0.0874010 + 0.151383i
\(39\) 0 0
\(40\) 0 0
\(41\) 53.5454 + 30.9145i 1.30599 + 0.754011i 0.981424 0.191853i \(-0.0614498\pi\)
0.324562 + 0.945864i \(0.394783\pi\)
\(42\) 0 0
\(43\) 0.826701 0.477296i 0.0192256 0.0110999i −0.490356 0.871522i \(-0.663133\pi\)
0.509582 + 0.860422i \(0.329800\pi\)
\(44\) 18.8776i 0.429036i
\(45\) 0 0
\(46\) −13.3485 −0.290184
\(47\) −7.05501 12.2196i −0.150107 0.259992i 0.781160 0.624331i \(-0.214628\pi\)
−0.931267 + 0.364339i \(0.881295\pi\)
\(48\) 0 0
\(49\) −4.34847 + 7.53177i −0.0887443 + 0.153710i
\(50\) 0 0
\(51\) 0 0
\(52\) 34.1161 19.6969i 0.656079 0.378787i
\(53\) 9.53512 0.179908 0.0899539 0.995946i \(-0.471328\pi\)
0.0899539 + 0.995946i \(0.471328\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −15.5505 + 8.97809i −0.277688 + 0.160323i
\(57\) 0 0
\(58\) 4.02834 + 2.32577i 0.0694542 + 0.0400994i
\(59\) 79.2650 + 45.7637i 1.34348 + 0.775656i 0.987316 0.158769i \(-0.0507526\pi\)
0.356160 + 0.934425i \(0.384086\pi\)
\(60\) 0 0
\(61\) 37.5454 + 65.0306i 0.615498 + 1.06607i 0.990297 + 0.138968i \(0.0443786\pi\)
−0.374798 + 0.927106i \(0.622288\pi\)
\(62\) −58.0470 −0.936241
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 26.8075 + 15.4773i 0.400111 + 0.231004i 0.686532 0.727100i \(-0.259132\pi\)
−0.286421 + 0.958104i \(0.592465\pi\)
\(68\) 1.90702 3.30306i 0.0280445 0.0485744i
\(69\) 0 0
\(70\) 0 0
\(71\) 85.9026i 1.20990i 0.796265 + 0.604948i \(0.206806\pi\)
−0.796265 + 0.604948i \(0.793194\pi\)
\(72\) 0 0
\(73\) 96.0908i 1.31631i −0.752881 0.658156i \(-0.771337\pi\)
0.752881 0.658156i \(-0.228663\pi\)
\(74\) −21.1918 + 12.2351i −0.286376 + 0.165339i
\(75\) 0 0
\(76\) 4.69694 8.13534i 0.0618018 0.107044i
\(77\) 29.9609 51.8939i 0.389103 0.673946i
\(78\) 0 0
\(79\) 14.8712 + 25.7576i 0.188243 + 0.326046i 0.944664 0.328038i \(-0.106388\pi\)
−0.756422 + 0.654084i \(0.773054\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 87.4393i 1.06633i
\(83\) 43.9530 + 76.1288i 0.529554 + 0.917215i 0.999406 + 0.0344693i \(0.0109741\pi\)
−0.469852 + 0.882745i \(0.655693\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.16913 0.674999i −0.0135946 0.00784882i
\(87\) 0 0
\(88\) −23.1202 + 13.3485i −0.262730 + 0.151687i
\(89\) 41.3766i 0.464905i 0.972608 + 0.232453i \(0.0746751\pi\)
−0.972608 + 0.232453i \(0.925325\pi\)
\(90\) 0 0
\(91\) 125.045 1.37413
\(92\) 9.43879 + 16.3485i 0.102596 + 0.177701i
\(93\) 0 0
\(94\) −9.97730 + 17.2812i −0.106141 + 0.183842i
\(95\) 0 0
\(96\) 0 0
\(97\) −83.0333 + 47.9393i −0.856013 + 0.494219i −0.862675 0.505758i \(-0.831213\pi\)
0.00666202 + 0.999978i \(0.497879\pi\)
\(98\) 12.2993 0.125503
\(99\) 0 0
\(100\) 0 0
\(101\) 136.772 78.9656i 1.35418 0.781838i 0.365350 0.930870i \(-0.380949\pi\)
0.988832 + 0.149032i \(0.0476159\pi\)
\(102\) 0 0
\(103\) −25.2327 14.5681i −0.244978 0.141438i 0.372485 0.928038i \(-0.378506\pi\)
−0.617462 + 0.786600i \(0.711839\pi\)
\(104\) −48.2474 27.8557i −0.463918 0.267843i
\(105\) 0 0
\(106\) −6.74235 11.6781i −0.0636070 0.110171i
\(107\) 171.805 1.60566 0.802829 0.596210i \(-0.203327\pi\)
0.802829 + 0.596210i \(0.203327\pi\)
\(108\) 0 0
\(109\) −116.272 −1.06672 −0.533360 0.845888i \(-0.679071\pi\)
−0.533360 + 0.845888i \(0.679071\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 21.9917 + 12.6969i 0.196355 + 0.113366i
\(113\) 101.132 175.166i 0.894976 1.55014i 0.0611424 0.998129i \(-0.480526\pi\)
0.833834 0.552015i \(-0.186141\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.57826i 0.0567091i
\(117\) 0 0
\(118\) 129.439i 1.09694i
\(119\) 10.4847 6.05334i 0.0881067 0.0508684i
\(120\) 0 0
\(121\) −15.9546 + 27.6342i −0.131856 + 0.228382i
\(122\) 53.0972 91.9671i 0.435223 0.753829i
\(123\) 0 0
\(124\) 41.0454 + 71.0927i 0.331011 + 0.573328i
\(125\) 0 0
\(126\) 0 0
\(127\) 10.0908i 0.0794552i −0.999211 0.0397276i \(-0.987351\pi\)
0.999211 0.0397276i \(-0.0126490\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −4.29567 2.48010i −0.0327913 0.0189321i 0.483515 0.875336i \(-0.339360\pi\)
−0.516306 + 0.856404i \(0.672693\pi\)
\(132\) 0 0
\(133\) 25.8235 14.9092i 0.194161 0.112099i
\(134\) 43.7764i 0.326690i
\(135\) 0 0
\(136\) −5.39388 −0.0396609
\(137\) 117.342 + 203.242i 0.856511 + 1.48352i 0.875236 + 0.483696i \(0.160706\pi\)
−0.0187249 + 0.999825i \(0.505961\pi\)
\(138\) 0 0
\(139\) 53.2650 92.2578i 0.383202 0.663725i −0.608316 0.793695i \(-0.708155\pi\)
0.991518 + 0.129970i \(0.0414881\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 105.209 60.7423i 0.740907 0.427763i
\(143\) 185.915 1.30011
\(144\) 0 0
\(145\) 0 0
\(146\) −117.687 + 67.9465i −0.806074 + 0.465387i
\(147\) 0 0
\(148\) 29.9698 + 17.3031i 0.202499 + 0.116913i
\(149\) −91.0301 52.5563i −0.610940 0.352727i 0.162393 0.986726i \(-0.448079\pi\)
−0.773333 + 0.634000i \(0.781412\pi\)
\(150\) 0 0
\(151\) 142.614 + 247.014i 0.944460 + 1.63585i 0.756828 + 0.653614i \(0.226748\pi\)
0.187632 + 0.982239i \(0.439919\pi\)
\(152\) −13.2849 −0.0874010
\(153\) 0 0
\(154\) −84.7423 −0.550275
\(155\) 0 0
\(156\) 0 0
\(157\) −170.764 98.5908i −1.08767 0.627967i −0.154715 0.987959i \(-0.549446\pi\)
−0.932955 + 0.359992i \(0.882779\pi\)
\(158\) 21.0310 36.4268i 0.133108 0.230549i
\(159\) 0 0
\(160\) 0 0
\(161\) 59.9219i 0.372186i
\(162\) 0 0
\(163\) 249.060i 1.52798i −0.645230 0.763988i \(-0.723238\pi\)
0.645230 0.763988i \(-0.276762\pi\)
\(164\) −107.091 + 61.8289i −0.652993 + 0.377006i
\(165\) 0 0
\(166\) 62.1589 107.662i 0.374451 0.648569i
\(167\) 24.2182 41.9472i 0.145019 0.251181i −0.784361 0.620305i \(-0.787009\pi\)
0.929380 + 0.369124i \(0.120342\pi\)
\(168\) 0 0
\(169\) 109.485 + 189.633i 0.647838 + 1.12209i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.90918i 0.0110999i
\(173\) −50.2206 86.9847i −0.290293 0.502802i 0.683586 0.729870i \(-0.260419\pi\)
−0.973879 + 0.227068i \(0.927086\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 32.6969 + 18.8776i 0.185778 + 0.107259i
\(177\) 0 0
\(178\) 50.6757 29.2577i 0.284695 0.164369i
\(179\) 285.071i 1.59257i −0.604919 0.796287i \(-0.706794\pi\)
0.604919 0.796287i \(-0.293206\pi\)
\(180\) 0 0
\(181\) 37.1214 0.205091 0.102545 0.994728i \(-0.467301\pi\)
0.102545 + 0.994728i \(0.467301\pi\)
\(182\) −88.4205 153.149i −0.485827 0.841476i
\(183\) 0 0
\(184\) 13.3485 23.1202i 0.0725460 0.125653i
\(185\) 0 0
\(186\) 0 0
\(187\) 15.5885 9.00000i 0.0833607 0.0481283i
\(188\) 28.2201 0.150107
\(189\) 0 0
\(190\) 0 0
\(191\) 15.5227 8.96204i 0.0812707 0.0469217i −0.458814 0.888532i \(-0.651726\pi\)
0.540085 + 0.841611i \(0.318392\pi\)
\(192\) 0 0
\(193\) 82.6657 + 47.7270i 0.428319 + 0.247290i 0.698630 0.715483i \(-0.253793\pi\)
−0.270311 + 0.962773i \(0.587127\pi\)
\(194\) 117.427 + 67.7964i 0.605293 + 0.349466i
\(195\) 0 0
\(196\) −8.69694 15.0635i −0.0443721 0.0768548i
\(197\) −160.363 −0.814026 −0.407013 0.913422i \(-0.633430\pi\)
−0.407013 + 0.913422i \(0.633430\pi\)
\(198\) 0 0
\(199\) −6.51531 −0.0327402 −0.0163701 0.999866i \(-0.505211\pi\)
−0.0163701 + 0.999866i \(0.505211\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −193.425 111.674i −0.957552 0.552843i
\(203\) 10.4405 18.0834i 0.0514309 0.0890809i
\(204\) 0 0
\(205\) 0 0
\(206\) 41.2048i 0.200024i
\(207\) 0 0
\(208\) 78.7878i 0.378787i
\(209\) 38.3939 22.1667i 0.183703 0.106061i
\(210\) 0 0
\(211\) 77.2196 133.748i 0.365970 0.633878i −0.622961 0.782253i \(-0.714071\pi\)
0.988931 + 0.148374i \(0.0474040\pi\)
\(212\) −9.53512 + 16.5153i −0.0449770 + 0.0779024i
\(213\) 0 0
\(214\) −121.485 210.418i −0.567685 0.983260i
\(215\) 0 0
\(216\) 0 0
\(217\) 260.576i 1.20081i
\(218\) 82.2170 + 142.404i 0.377142 + 0.653230i
\(219\) 0 0
\(220\) 0 0
\(221\) 32.5301 + 18.7813i 0.147195 + 0.0849831i
\(222\) 0 0
\(223\) 80.3437 46.3865i 0.360286 0.208011i −0.308920 0.951088i \(-0.599968\pi\)
0.669206 + 0.743077i \(0.266634\pi\)
\(224\) 35.9124i 0.160323i
\(225\) 0 0
\(226\) −286.045 −1.26569
\(227\) 84.9010 + 147.053i 0.374013 + 0.647810i 0.990179 0.139807i \(-0.0446482\pi\)
−0.616166 + 0.787617i \(0.711315\pi\)
\(228\) 0 0
\(229\) 203.772 352.944i 0.889836 1.54124i 0.0497675 0.998761i \(-0.484152\pi\)
0.840068 0.542480i \(-0.182515\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −8.05669 + 4.65153i −0.0347271 + 0.0200497i
\(233\) 15.2562 0.0654772 0.0327386 0.999464i \(-0.489577\pi\)
0.0327386 + 0.999464i \(0.489577\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −158.530 + 91.5274i −0.671738 + 0.387828i
\(237\) 0 0
\(238\) −14.8276 8.56072i −0.0623008 0.0359694i
\(239\) 48.9620 + 28.2682i 0.204862 + 0.118277i 0.598921 0.800808i \(-0.295596\pi\)
−0.394059 + 0.919085i \(0.628930\pi\)
\(240\) 0 0
\(241\) −42.1061 72.9299i −0.174714 0.302614i 0.765348 0.643617i \(-0.222567\pi\)
−0.940062 + 0.341003i \(0.889233\pi\)
\(242\) 45.1264 0.186473
\(243\) 0 0
\(244\) −150.182 −0.615498
\(245\) 0 0
\(246\) 0 0
\(247\) 80.1206 + 46.2577i 0.324375 + 0.187278i
\(248\) 58.0470 100.540i 0.234060 0.405404i
\(249\) 0 0
\(250\) 0 0
\(251\) 218.903i 0.872123i −0.899917 0.436062i \(-0.856373\pi\)
0.899917 0.436062i \(-0.143627\pi\)
\(252\) 0 0
\(253\) 89.0908i 0.352138i
\(254\) −12.3587 + 7.13528i −0.0486562 + 0.0280917i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 6.41212 11.1061i 0.0249499 0.0432145i −0.853281 0.521452i \(-0.825391\pi\)
0.878231 + 0.478237i \(0.158724\pi\)
\(258\) 0 0
\(259\) 54.9240 + 95.1311i 0.212062 + 0.367302i
\(260\) 0 0
\(261\) 0 0
\(262\) 7.01479i 0.0267740i
\(263\) −168.232 291.386i −0.639666 1.10793i −0.985506 0.169640i \(-0.945739\pi\)
0.345840 0.938293i \(-0.387594\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −36.5199 21.0848i −0.137293 0.0792661i
\(267\) 0 0
\(268\) −53.6149 + 30.9546i −0.200056 + 0.115502i
\(269\) 60.4468i 0.224709i 0.993668 + 0.112355i \(0.0358393\pi\)
−0.993668 + 0.112355i \(0.964161\pi\)
\(270\) 0 0
\(271\) 274.636 1.01342 0.506708 0.862118i \(-0.330862\pi\)
0.506708 + 0.862118i \(0.330862\pi\)
\(272\) 3.81405 + 6.60612i 0.0140222 + 0.0242872i
\(273\) 0 0
\(274\) 165.947 287.428i 0.605645 1.04901i
\(275\) 0 0
\(276\) 0 0
\(277\) 42.4352 24.5000i 0.153196 0.0884477i −0.421442 0.906855i \(-0.638476\pi\)
0.574638 + 0.818407i \(0.305143\pi\)
\(278\) −150.656 −0.541929
\(279\) 0 0
\(280\) 0 0
\(281\) 297.121 171.543i 1.05737 0.610473i 0.132666 0.991161i \(-0.457646\pi\)
0.924704 + 0.380688i \(0.124313\pi\)
\(282\) 0 0
\(283\) 297.401 + 171.704i 1.05089 + 0.606729i 0.922897 0.385047i \(-0.125815\pi\)
0.127988 + 0.991776i \(0.459148\pi\)
\(284\) −148.788 85.9026i −0.523901 0.302474i
\(285\) 0 0
\(286\) −131.462 227.699i −0.459657 0.796150i
\(287\) −392.519 −1.36766
\(288\) 0 0
\(289\) −285.363 −0.987416
\(290\) 0 0
\(291\) 0 0
\(292\) 166.434 + 96.0908i 0.569980 + 0.329078i
\(293\) −143.226 + 248.076i −0.488828 + 0.846674i −0.999917 0.0128532i \(-0.995909\pi\)
0.511090 + 0.859527i \(0.329242\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 48.9404i 0.165339i
\(297\) 0 0
\(298\) 148.652i 0.498831i
\(299\) −161.007 + 92.9577i −0.538486 + 0.310895i
\(300\) 0 0
\(301\) −3.03010 + 5.24829i −0.0100668 + 0.0174362i
\(302\) 201.686 349.330i 0.667834 1.15672i
\(303\) 0 0
\(304\) 9.39388 + 16.2707i 0.0309009 + 0.0535219i
\(305\) 0 0
\(306\) 0 0
\(307\) 154.091i 0.501924i −0.967997 0.250962i \(-0.919253\pi\)
0.967997 0.250962i \(-0.0807470\pi\)
\(308\) 59.9219 + 103.788i 0.194552 + 0.336973i
\(309\) 0 0
\(310\) 0 0
\(311\) 62.3411 + 35.9926i 0.200454 + 0.115732i 0.596867 0.802340i \(-0.296412\pi\)
−0.396413 + 0.918072i \(0.629745\pi\)
\(312\) 0 0
\(313\) −318.356 + 183.803i −1.01711 + 0.587230i −0.913266 0.407363i \(-0.866448\pi\)
−0.103846 + 0.994593i \(0.533115\pi\)
\(314\) 278.857i 0.888079i
\(315\) 0 0
\(316\) −59.4847 −0.188243
\(317\) −53.7987 93.1821i −0.169712 0.293950i 0.768607 0.639722i \(-0.220950\pi\)
−0.938319 + 0.345772i \(0.887617\pi\)
\(318\) 0 0
\(319\) 15.5227 26.8861i 0.0486605 0.0842825i
\(320\) 0 0
\(321\) 0 0
\(322\) 73.3890 42.3712i 0.227916 0.131587i
\(323\) 8.95717 0.0277312
\(324\) 0 0
\(325\) 0 0
\(326\) −305.035 + 176.112i −0.935691 + 0.540221i
\(327\) 0 0
\(328\) 151.449 + 87.4393i 0.461736 + 0.266583i
\(329\) 77.5760 + 44.7885i 0.235793 + 0.136135i
\(330\) 0 0
\(331\) −8.59873 14.8934i −0.0259780 0.0449953i 0.852744 0.522329i \(-0.174937\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(332\) −175.812 −0.529554
\(333\) 0 0
\(334\) −68.4995 −0.205088
\(335\) 0 0
\(336\) 0 0
\(337\) 315.574 + 182.197i 0.936422 + 0.540644i 0.888837 0.458223i \(-0.151514\pi\)
0.0475854 + 0.998867i \(0.484847\pi\)
\(338\) 154.835 268.182i 0.458091 0.793437i
\(339\) 0 0
\(340\) 0 0
\(341\) 387.419i 1.13613i
\(342\) 0 0
\(343\) 366.287i 1.06789i
\(344\) 2.33826 1.35000i 0.00679728 0.00392441i
\(345\) 0 0
\(346\) −71.0227 + 123.015i −0.205268 + 0.355534i
\(347\) −291.697 + 505.234i −0.840626 + 1.45601i 0.0487402 + 0.998811i \(0.484479\pi\)
−0.889366 + 0.457196i \(0.848854\pi\)
\(348\) 0 0
\(349\) 156.379 + 270.856i 0.448076 + 0.776091i 0.998261 0.0589524i \(-0.0187760\pi\)
−0.550185 + 0.835043i \(0.685443\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 53.3939i 0.151687i
\(353\) 18.8078 + 32.5760i 0.0532798 + 0.0922834i 0.891435 0.453148i \(-0.149699\pi\)
−0.838155 + 0.545431i \(0.816366\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −71.6663 41.3766i −0.201310 0.116226i
\(357\) 0 0
\(358\) −349.139 + 201.576i −0.975249 + 0.563060i
\(359\) 294.028i 0.819019i −0.912306 0.409510i \(-0.865700\pi\)
0.912306 0.409510i \(-0.134300\pi\)
\(360\) 0 0
\(361\) −338.939 −0.938889
\(362\) −26.2488 45.4643i −0.0725105 0.125592i
\(363\) 0 0
\(364\) −125.045 + 216.585i −0.343531 + 0.595014i
\(365\) 0 0
\(366\) 0 0
\(367\) 28.7755 16.6135i 0.0784072 0.0452684i −0.460284 0.887772i \(-0.652252\pi\)
0.538691 + 0.842503i \(0.318919\pi\)
\(368\) −37.7552 −0.102596
\(369\) 0 0
\(370\) 0 0
\(371\) −52.4235 + 30.2667i −0.141303 + 0.0815814i
\(372\) 0 0
\(373\) 194.881 + 112.515i 0.522470 + 0.301648i 0.737945 0.674861i \(-0.235797\pi\)
−0.215475 + 0.976509i \(0.569130\pi\)
\(374\) −22.0454 12.7279i −0.0589449 0.0340319i
\(375\) 0 0
\(376\) −19.9546 34.5624i −0.0530707 0.0919212i
\(377\) 64.7858 0.171846
\(378\) 0 0
\(379\) 166.334 0.438875 0.219438 0.975627i \(-0.429578\pi\)
0.219438 + 0.975627i \(0.429578\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −21.9524 12.6742i −0.0574671 0.0331786i
\(383\) −368.493 + 638.249i −0.962124 + 1.66645i −0.244972 + 0.969530i \(0.578779\pi\)
−0.717152 + 0.696917i \(0.754555\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 134.992i 0.349721i
\(387\) 0 0
\(388\) 191.757i 0.494219i
\(389\) −146.682 + 84.6867i −0.377074 + 0.217704i −0.676544 0.736402i \(-0.736523\pi\)
0.299471 + 0.954106i \(0.403190\pi\)
\(390\) 0 0
\(391\) −9.00000 + 15.5885i −0.0230179 + 0.0398682i
\(392\) −12.2993 + 21.3031i −0.0313758 + 0.0543445i
\(393\) 0 0
\(394\) 113.394 + 196.404i 0.287802 + 0.498487i
\(395\) 0 0
\(396\) 0 0
\(397\) 256.272i 0.645523i 0.946480 + 0.322761i \(0.104611\pi\)
−0.946480 + 0.322761i \(0.895389\pi\)
\(398\) 4.60702 + 7.97959i 0.0115754 + 0.0200492i
\(399\) 0 0
\(400\) 0 0
\(401\) −226.364 130.691i −0.564498 0.325913i 0.190451 0.981697i \(-0.439005\pi\)
−0.754949 + 0.655784i \(0.772338\pi\)
\(402\) 0 0
\(403\) −700.155 + 404.234i −1.73736 + 1.00306i
\(404\) 315.862i 0.781838i
\(405\) 0 0
\(406\) −29.5301 −0.0727342
\(407\) 81.6600 + 141.439i 0.200639 + 0.347517i
\(408\) 0 0
\(409\) −221.894 + 384.331i −0.542528 + 0.939686i 0.456230 + 0.889862i \(0.349199\pi\)
−0.998758 + 0.0498240i \(0.984134\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 50.4654 29.1362i 0.122489 0.0707190i
\(413\) −581.059 −1.40692
\(414\) 0 0
\(415\) 0 0
\(416\) 96.4949 55.7114i 0.231959 0.133922i
\(417\) 0 0
\(418\) −54.2971 31.3485i −0.129897 0.0749963i
\(419\) 9.32525 + 5.38394i 0.0222560 + 0.0128495i 0.511087 0.859529i \(-0.329243\pi\)
−0.488831 + 0.872379i \(0.662576\pi\)
\(420\) 0 0
\(421\) −127.152 220.233i −0.302023 0.523119i 0.674571 0.738210i \(-0.264328\pi\)
−0.976594 + 0.215091i \(0.930995\pi\)
\(422\) −218.410 −0.517560
\(423\) 0 0
\(424\) 26.9694 0.0636070
\(425\) 0 0
\(426\) 0 0
\(427\) −412.844 238.356i −0.966849 0.558210i
\(428\) −171.805 + 297.576i −0.401414 + 0.695270i
\(429\) 0 0
\(430\) 0 0
\(431\) 698.663i 1.62103i −0.585719 0.810514i \(-0.699188\pi\)
0.585719 0.810514i \(-0.300812\pi\)
\(432\) 0 0
\(433\) 211.728i 0.488978i 0.969652 + 0.244489i \(0.0786202\pi\)
−0.969652 + 0.244489i \(0.921380\pi\)
\(434\) 319.139 184.255i 0.735342 0.424550i
\(435\) 0 0
\(436\) 116.272 201.390i 0.266680 0.461903i
\(437\) −22.1667 + 38.3939i −0.0507247 + 0.0878578i
\(438\) 0 0
\(439\) 139.931 + 242.368i 0.318750 + 0.552092i 0.980228 0.197874i \(-0.0634035\pi\)
−0.661477 + 0.749965i \(0.730070\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 53.1214i 0.120184i
\(443\) 275.627 + 477.400i 0.622183 + 1.07765i 0.989078 + 0.147391i \(0.0470874\pi\)
−0.366895 + 0.930262i \(0.619579\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −113.623 65.6004i −0.254761 0.147086i
\(447\) 0 0
\(448\) −43.9835 + 25.3939i −0.0981774 + 0.0566828i
\(449\) 542.865i 1.20905i 0.796585 + 0.604527i \(0.206638\pi\)
−0.796585 + 0.604527i \(0.793362\pi\)
\(450\) 0 0
\(451\) −583.590 −1.29399
\(452\) 202.265 + 350.333i 0.447488 + 0.775072i
\(453\) 0 0
\(454\) 120.068 207.964i 0.264467 0.458071i
\(455\) 0 0
\(456\) 0 0
\(457\) −79.9898 + 46.1821i −0.175032 + 0.101055i −0.584957 0.811065i \(-0.698888\pi\)
0.409924 + 0.912120i \(0.365555\pi\)
\(458\) −576.356 −1.25842
\(459\) 0 0
\(460\) 0 0
\(461\) 199.030 114.910i 0.431736 0.249263i −0.268350 0.963321i \(-0.586478\pi\)
0.700086 + 0.714059i \(0.253145\pi\)
\(462\) 0 0
\(463\) 442.368 + 255.401i 0.955438 + 0.551623i 0.894766 0.446535i \(-0.147342\pi\)
0.0606723 + 0.998158i \(0.480676\pi\)
\(464\) 11.3939 + 6.57826i 0.0245558 + 0.0141773i
\(465\) 0 0
\(466\) −10.7878 18.6849i −0.0231497 0.0400964i
\(467\) 833.657 1.78513 0.892567 0.450915i \(-0.148902\pi\)
0.892567 + 0.450915i \(0.148902\pi\)
\(468\) 0 0
\(469\) −196.514 −0.419007
\(470\) 0 0
\(471\) 0 0
\(472\) 224.195 + 129.439i 0.474990 + 0.274236i
\(473\) −4.50510 + 7.80306i −0.00952452 + 0.0164970i
\(474\) 0 0
\(475\) 0 0
\(476\) 24.2134i 0.0508684i
\(477\) 0 0
\(478\) 79.9546i 0.167269i
\(479\) 569.144 328.595i 1.18819 0.686003i 0.230296 0.973121i \(-0.426031\pi\)
0.957895 + 0.287118i \(0.0926972\pi\)
\(480\) 0 0
\(481\) −170.409 + 295.156i −0.354280 + 0.613631i
\(482\) −59.5471 + 103.139i −0.123542 + 0.213980i
\(483\) 0 0
\(484\) −31.9092 55.2683i −0.0659281 0.114191i
\(485\) 0 0
\(486\) 0 0
\(487\) 351.666i 0.722107i 0.932545 + 0.361054i \(0.117583\pi\)
−0.932545 + 0.361054i \(0.882417\pi\)
\(488\) 106.194 + 183.934i 0.217612 + 0.376914i
\(489\) 0 0
\(490\) 0 0
\(491\) −212.539 122.709i −0.432869 0.249917i 0.267699 0.963503i \(-0.413737\pi\)
−0.700568 + 0.713586i \(0.747070\pi\)
\(492\) 0 0
\(493\) 5.43210 3.13622i 0.0110185 0.00636151i
\(494\) 130.836i 0.264851i
\(495\) 0 0
\(496\) −164.182 −0.331011
\(497\) −272.675 472.287i −0.548642 0.950276i
\(498\) 0 0
\(499\) 315.113 545.792i 0.631489 1.09377i −0.355758 0.934578i \(-0.615777\pi\)
0.987247 0.159193i \(-0.0508892\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −268.100 + 154.788i −0.534064 + 0.308342i
\(503\) 286.891 0.570360 0.285180 0.958474i \(-0.407947\pi\)
0.285180 + 0.958474i \(0.407947\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 109.114 62.9967i 0.215639 0.124499i
\(507\) 0 0
\(508\) 17.4778 + 10.0908i 0.0344051 + 0.0198638i
\(509\) 755.454 + 436.161i 1.48419 + 0.856898i 0.999838 0.0179741i \(-0.00572163\pi\)
0.484353 + 0.874873i \(0.339055\pi\)
\(510\) 0 0
\(511\) 305.015 + 528.301i 0.596898 + 1.03386i
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) −18.1362 −0.0352845
\(515\) 0 0
\(516\) 0 0
\(517\) 115.339 + 66.5908i 0.223092 + 0.128802i
\(518\) 77.6742 134.536i 0.149950 0.259721i
\(519\) 0 0
\(520\) 0 0
\(521\) 206.132i 0.395646i −0.980238 0.197823i \(-0.936613\pi\)
0.980238 0.197823i \(-0.0633872\pi\)
\(522\) 0 0
\(523\) 884.817i 1.69181i 0.533333 + 0.845906i \(0.320939\pi\)
−0.533333 + 0.845906i \(0.679061\pi\)
\(524\) 8.59133 4.96021i 0.0163957 0.00946604i
\(525\) 0 0
\(526\) −237.916 + 412.083i −0.452312 + 0.783427i
\(527\) −39.1373 + 67.7878i −0.0742643 + 0.128630i
\(528\) 0 0
\(529\) 219.955 + 380.973i 0.415793 + 0.720175i
\(530\) 0 0
\(531\) 0 0
\(532\) 59.6367i 0.112099i
\(533\) −608.920 1054.68i −1.14244 1.97876i
\(534\) 0 0
\(535\) 0 0
\(536\) 75.8230 + 43.7764i 0.141461 + 0.0816724i
\(537\) 0 0
\(538\) 74.0319 42.7423i 0.137606 0.0794467i
\(539\) 82.0886i 0.152298i
\(540\) 0 0
\(541\) −509.151 −0.941129 −0.470565 0.882365i \(-0.655950\pi\)
−0.470565 + 0.882365i \(0.655950\pi\)
\(542\) −194.197 336.359i −0.358297 0.620588i
\(543\) 0 0
\(544\) 5.39388 9.34247i 0.00991521 0.0171737i
\(545\) 0 0
\(546\) 0 0
\(547\) −474.620 + 274.022i −0.867679 + 0.500955i −0.866576 0.499045i \(-0.833684\pi\)
−0.00110267 + 0.999999i \(0.500351\pi\)
\(548\) −469.368 −0.856511
\(549\) 0 0
\(550\) 0 0
\(551\) 13.3791 7.72442i 0.0242815 0.0140189i
\(552\) 0 0
\(553\) −163.522 94.4092i −0.295699 0.170722i
\(554\) −60.0125 34.6482i −0.108326 0.0625419i
\(555\) 0 0
\(556\) 106.530 + 184.516i 0.191601 + 0.331862i
\(557\) 406.542 0.729879 0.364939 0.931031i \(-0.381090\pi\)
0.364939 + 0.931031i \(0.381090\pi\)
\(558\) 0 0
\(559\) −18.8025 −0.0336360
\(560\) 0 0
\(561\) 0 0
\(562\) −420.192 242.598i −0.747673 0.431669i
\(563\) −303.236 + 525.220i −0.538607 + 0.932895i 0.460372 + 0.887726i \(0.347716\pi\)
−0.998979 + 0.0451687i \(0.985617\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 485.653i 0.858045i
\(567\) 0 0
\(568\) 242.969i 0.427763i
\(569\) −224.954 + 129.877i −0.395350 + 0.228255i −0.684476 0.729036i \(-0.739969\pi\)
0.289126 + 0.957291i \(0.406635\pi\)
\(570\) 0 0
\(571\) 43.9166 76.0657i 0.0769117 0.133215i −0.825004 0.565126i \(-0.808827\pi\)
0.901916 + 0.431911i \(0.142161\pi\)
\(572\) −185.915 + 322.015i −0.325027 + 0.562963i
\(573\) 0 0
\(574\) 277.553 + 480.736i 0.483541 + 0.837518i
\(575\) 0 0
\(576\) 0 0
\(577\) 132.091i 0.228927i 0.993427 + 0.114463i \(0.0365149\pi\)
−0.993427 + 0.114463i \(0.963485\pi\)
\(578\) 201.782 + 349.497i 0.349104 + 0.604666i
\(579\) 0 0
\(580\) 0 0
\(581\) −483.302 279.034i −0.831844 0.480266i
\(582\) 0 0
\(583\) −77.9423 + 45.0000i −0.133692 + 0.0771870i
\(584\) 271.786i 0.465387i
\(585\) 0 0
\(586\) 405.106 0.691306
\(587\) −283.833 491.614i −0.483532 0.837502i 0.516289 0.856414i \(-0.327313\pi\)
−0.999821 + 0.0189125i \(0.993980\pi\)
\(588\) 0 0
\(589\) −96.3939 + 166.959i −0.163657 + 0.283462i
\(590\) 0 0
\(591\) 0 0
\(592\) −59.9396 + 34.6061i −0.101249 + 0.0584563i
\(593\) −77.0321 −0.129902 −0.0649512 0.997888i \(-0.520689\pi\)
−0.0649512 + 0.997888i \(0.520689\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 182.060 105.113i 0.305470 0.176363i
\(597\) 0 0
\(598\) 227.699 + 131.462i 0.380767 + 0.219836i
\(599\) −764.917 441.625i −1.27699 0.737270i −0.300696 0.953720i \(-0.597219\pi\)
−0.976294 + 0.216450i \(0.930552\pi\)
\(600\) 0 0
\(601\) 397.545 + 688.569i 0.661473 + 1.14571i 0.980229 + 0.197868i \(0.0634018\pi\)
−0.318755 + 0.947837i \(0.603265\pi\)
\(602\) 8.57042 0.0142366
\(603\) 0 0
\(604\) −570.454 −0.944460
\(605\) 0 0
\(606\) 0 0
\(607\) −256.987 148.372i −0.423373 0.244434i 0.273147 0.961972i \(-0.411936\pi\)
−0.696519 + 0.717538i \(0.745269\pi\)
\(608\) 13.2849 23.0102i 0.0218502 0.0378457i
\(609\) 0 0
\(610\) 0 0
\(611\) 277.924i 0.454868i
\(612\) 0 0
\(613\) 517.181i 0.843688i −0.906668 0.421844i \(-0.861383\pi\)
0.906668 0.421844i \(-0.138617\pi\)
\(614\) −188.722 + 108.959i −0.307365 + 0.177457i
\(615\) 0 0
\(616\) 84.7423 146.778i 0.137569 0.238276i
\(617\) 132.738 229.909i 0.215134 0.372623i −0.738180 0.674604i \(-0.764314\pi\)
0.953314 + 0.301981i \(0.0976478\pi\)
\(618\) 0 0
\(619\) −98.5227 170.646i −0.159164 0.275681i 0.775403 0.631466i \(-0.217547\pi\)
−0.934568 + 0.355786i \(0.884213\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 101.803i 0.163670i
\(623\) −131.339 227.486i −0.210817 0.365146i
\(624\) 0 0
\(625\) 0 0
\(626\) 450.224 + 259.937i 0.719207 + 0.415234i
\(627\) 0 0
\(628\) 341.529 197.182i 0.543835 0.313983i
\(629\) 32.9973i 0.0524600i
\(630\) 0 0
\(631\) −160.879 −0.254958 −0.127479 0.991841i \(-0.540689\pi\)
−0.127479 + 0.991841i \(0.540689\pi\)
\(632\) 42.0620 + 72.8536i 0.0665538 + 0.115275i
\(633\) 0 0
\(634\) −76.0829 + 131.779i −0.120005 + 0.207854i
\(635\) 0 0
\(636\) 0 0
\(637\) 148.353 85.6515i 0.232893 0.134461i
\(638\) −43.9048 −0.0688164
\(639\) 0 0
\(640\) 0 0
\(641\) 267.894 154.669i 0.417931 0.241293i −0.276261 0.961083i \(-0.589095\pi\)
0.694192 + 0.719790i \(0.255762\pi\)
\(642\) 0 0
\(643\) −341.726 197.296i −0.531456 0.306836i 0.210153 0.977668i \(-0.432604\pi\)
−0.741609 + 0.670832i \(0.765937\pi\)
\(644\) −103.788 59.9219i −0.161161 0.0930464i
\(645\) 0 0
\(646\) −6.33368 10.9703i −0.00980445 0.0169818i
\(647\) −418.736 −0.647196 −0.323598 0.946195i \(-0.604892\pi\)
−0.323598 + 0.946195i \(0.604892\pi\)
\(648\) 0 0
\(649\) −863.908 −1.33114
\(650\) 0 0
\(651\) 0 0
\(652\) 431.385 + 249.060i 0.661633 + 0.381994i
\(653\) −265.363 + 459.621i −0.406375 + 0.703861i −0.994480 0.104923i \(-0.966540\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 247.316i 0.377006i
\(657\) 0 0
\(658\) 126.681i 0.192524i
\(659\) 310.204 179.096i 0.470719 0.271770i −0.245822 0.969315i \(-0.579058\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(660\) 0 0
\(661\) 111.136 192.493i 0.168133 0.291214i −0.769631 0.638489i \(-0.779560\pi\)
0.937763 + 0.347275i \(0.112893\pi\)
\(662\) −12.1604 + 21.0625i −0.0183692 + 0.0318165i
\(663\) 0 0
\(664\) 124.318 + 215.325i 0.187226 + 0.324284i
\(665\) 0 0
\(666\) 0 0
\(667\) 31.0454i 0.0465448i
\(668\) 48.4365 + 83.8944i 0.0725097 + 0.125590i
\(669\) 0 0
\(670\) 0 0
\(671\) −613.810 354.383i −0.914769 0.528142i
\(672\) 0 0
\(673\) −250.464 + 144.606i −0.372161 + 0.214867i −0.674402 0.738364i \(-0.735599\pi\)
0.302241 + 0.953231i \(0.402265\pi\)
\(674\) 515.331i 0.764586i
\(675\) 0 0
\(676\) −437.939 −0.647838
\(677\) 232.226 + 402.227i 0.343022 + 0.594131i 0.984992 0.172598i \(-0.0552163\pi\)
−0.641971 + 0.766729i \(0.721883\pi\)
\(678\) 0 0
\(679\) 304.341 527.134i 0.448220 0.776339i
\(680\) 0 0
\(681\) 0 0
\(682\) 474.490 273.947i 0.695733 0.401681i
\(683\) 1126.36 1.64913 0.824565 0.565767i \(-0.191420\pi\)
0.824565 + 0.565767i \(0.191420\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −448.608 + 259.004i −0.653948 + 0.377557i
\(687\) 0 0
\(688\) −3.30680 1.90918i −0.00480640 0.00277498i
\(689\) −162.650 93.9063i −0.236067 0.136294i
\(690\) 0 0
\(691\) −518.841 898.658i −0.750855 1.30052i −0.947409 0.320025i \(-0.896309\pi\)
0.196554 0.980493i \(-0.437025\pi\)
\(692\) 200.883 0.290293
\(693\) 0 0
\(694\) 825.044 1.18882
\(695\) 0 0
\(696\) 0 0
\(697\) −102.112 58.9546i −0.146503 0.0845833i
\(698\) 221.153 383.048i 0.316838 0.548779i
\(699\) 0 0
\(700\) 0 0
\(701\) 778.180i 1.11010i 0.831817 + 0.555050i \(0.187301\pi\)
−0.831817 + 0.555050i \(0.812699\pi\)
\(702\) 0 0
\(703\) 81.2714i 0.115607i
\(704\) −65.3939 + 37.7552i −0.0928890 + 0.0536295i
\(705\) 0 0
\(706\) 26.5982 46.0695i 0.0376745 0.0652542i
\(707\) −501.311 + 868.296i −0.709068 + 1.22814i
\(708\) 0 0
\(709\) −586.014 1015.01i −0.826536 1.43160i −0.900739 0.434360i \(-0.856975\pi\)
0.0742031 0.997243i \(-0.476359\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 117.031i 0.164369i
\(713\) −193.710 335.515i −0.271682 0.470568i
\(714\) 0 0
\(715\) 0 0
\(716\) 493.757 + 285.071i 0.689605 + 0.398144i
\(717\) 0 0
\(718\) −360.109 + 207.909i −0.501545 + 0.289567i
\(719\) 515.416i 0.716851i 0.933558 + 0.358426i \(0.116686\pi\)
−0.933558 + 0.358426i \(0.883314\pi\)
\(720\) 0 0
\(721\) 184.970 0.256547
\(722\) 239.666 + 415.114i 0.331947 + 0.574949i
\(723\) 0 0
\(724\) −37.1214 + 64.2962i −0.0512727 + 0.0888069i
\(725\) 0 0
\(726\) 0 0
\(727\) 728.681 420.704i 1.00231 0.578685i 0.0933809 0.995630i \(-0.470233\pi\)
0.908932 + 0.416945i \(0.136899\pi\)
\(728\) 353.682 0.485827
\(729\) 0 0
\(730\) 0 0
\(731\) −1.57654 + 0.910215i −0.00215669 + 0.00124516i
\(732\) 0 0
\(733\) −525.125 303.181i −0.716405 0.413617i 0.0970229 0.995282i \(-0.469068\pi\)
−0.813428 + 0.581665i \(0.802401\pi\)
\(734\) −40.6946 23.4951i −0.0554423 0.0320096i
\(735\) 0 0
\(736\) 26.6969 + 46.2405i 0.0362730 + 0.0628267i
\(737\) −292.174 −0.396437
\(738\) 0 0
\(739\) 389.362 0.526877 0.263439 0.964676i \(-0.415143\pi\)
0.263439 + 0.964676i \(0.415143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 74.1380 + 42.8036i 0.0999164 + 0.0576868i
\(743\) 522.375 904.779i 0.703061 1.21774i −0.264325 0.964434i \(-0.585149\pi\)
0.967387 0.253304i \(-0.0815174\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 318.240i 0.426595i
\(747\) 0 0
\(748\) 36.0000i 0.0481283i
\(749\) −944.574 + 545.350i −1.26111 + 0.728105i
\(750\) 0 0
\(751\) 645.916 1118.76i 0.860074 1.48969i −0.0117826 0.999931i \(-0.503751\pi\)
0.871857 0.489761i \(-0.162916\pi\)
\(752\) −28.2201 + 48.8786i −0.0375267 + 0.0649981i
\(753\) 0 0
\(754\) −45.8105 79.3460i −0.0607566 0.105233i
\(755\) 0 0
\(756\) 0 0
\(757\) 1042.36i 1.37697i −0.725252 0.688483i \(-0.758277\pi\)
0.725252 0.688483i \(-0.241723\pi\)
\(758\) −117.616 203.716i −0.155166 0.268755i
\(759\) 0 0
\(760\) 0 0
\(761\) 281.607 + 162.586i 0.370048 + 0.213647i 0.673479 0.739206i \(-0.264799\pi\)
−0.303431 + 0.952853i \(0.598132\pi\)
\(762\) 0 0
\(763\) 639.258 369.076i 0.837822 0.483717i
\(764\) 35.8481i 0.0469217i
\(765\) 0 0
\(766\) 1042.26 1.36065
\(767\) −901.405 1561.28i −1.17523 2.03557i
\(768\) 0 0
\(769\) 171.348 296.783i 0.222819 0.385934i −0.732844 0.680397i \(-0.761807\pi\)
0.955663 + 0.294463i \(0.0951407\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −165.331 + 95.4541i −0.214160 + 0.123645i
\(773\) 532.579 0.688977 0.344488 0.938791i \(-0.388052\pi\)
0.344488 + 0.938791i \(0.388052\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −234.854 + 135.593i −0.302646 + 0.174733i
\(777\) 0 0
\(778\) 207.439 + 119.765i 0.266631 + 0.153940i
\(779\) −251.499 145.203i −0.322849 0.186397i
\(780\) 0 0
\(781\) −405.409 702.188i −0.519089 0.899089i
\(782\) 25.4558 0.0325522
\(783\) 0 0
\(784\) 34.7878 0.0443721
\(785\) 0 0
\(786\) 0 0
\(787\) −90.0264 51.9768i −0.114392 0.0660442i 0.441712 0.897157i \(-0.354371\pi\)
−0.556104 + 0.831113i \(0.687704\pi\)
\(788\) 160.363 277.757i 0.203507 0.352484i
\(789\) 0 0
\(790\) 0 0
\(791\) 1284.07i 1.62335i
\(792\) 0 0
\(793\) 1479.06i 1.86514i
\(794\) 313.868 181.212i 0.395300 0.228227i
\(795\) 0 0
\(796\) 6.51531 11.2848i 0.00818506 0.0141769i
\(797\) 552.138 956.331i 0.692770 1.19991i −0.278156 0.960536i \(-0.589723\pi\)
0.970927 0.239378i \(-0.0769434\pi\)
\(798\) 0 0
\(799\) 13.4541 + 23.3031i 0.0168386 + 0.0291654i
\(800\) 0 0
\(801\) 0 0
\(802\) 369.650i 0.460911i
\(803\) 453.491 + 785.469i 0.564746 + 0.978168i
\(804\) 0 0
\(805\) 0 0
\(806\) 990.168 + 571.674i 1.22850 + 0.709273i
\(807\) 0 0
\(808\) 386.851 223.348i 0.478776 0.276421i
\(809\) 256.465i 0.317015i 0.987358 + 0.158508i \(0.0506683\pi\)
−0.987358 + 0.158508i \(0.949332\pi\)
\(810\) 0 0
\(811\) 735.362 0.906735 0.453368 0.891324i \(-0.350222\pi\)
0.453368 + 0.891324i \(0.350222\pi\)
\(812\) 20.8809 + 36.1668i 0.0257154 + 0.0445404i
\(813\) 0 0
\(814\) 115.485 200.025i 0.141873 0.245731i
\(815\) 0 0
\(816\) 0 0
\(817\) −3.88296 + 2.24183i −0.00475271 + 0.00274398i
\(818\) 627.611 0.767250
\(819\) 0 0
\(820\) 0 0
\(821\) −1078.45 + 622.645i −1.31358 + 0.758398i −0.982688 0.185269i \(-0.940684\pi\)
−0.330896 + 0.943667i \(0.607351\pi\)
\(822\) 0 0
\(823\) 1335.63 + 771.129i 1.62288 + 0.936973i 0.986143 + 0.165896i \(0.0530516\pi\)
0.636742 + 0.771077i \(0.280282\pi\)
\(824\) −71.3689 41.2048i −0.0866127 0.0500059i
\(825\) 0 0
\(826\) 410.871 + 711.649i 0.497422 + 0.861560i
\(827\) 955.707 1.15563 0.577815 0.816167i \(-0.303905\pi\)
0.577815 + 0.816167i \(0.303905\pi\)
\(828\) 0 0
\(829\) −1082.88 −1.30625 −0.653123 0.757252i \(-0.726542\pi\)
−0.653123 + 0.757252i \(0.726542\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −136.464 78.7878i −0.164020 0.0946968i
\(833\) 8.29263 14.3633i 0.00995514 0.0172428i
\(834\) 0 0
\(835\) 0 0
\(836\) 88.6669i 0.106061i
\(837\) 0 0
\(838\) 15.2281i 0.0181719i
\(839\) 903.778 521.797i 1.07721 0.621927i 0.147067 0.989127i \(-0.453017\pi\)
0.930142 + 0.367200i \(0.119683\pi\)
\(840\) 0 0
\(841\) −415.091 + 718.958i −0.493568 + 0.854885i
\(842\) −179.819 + 311.456i −0.213562 + 0.369901i
\(843\) 0 0
\(844\) 154.439 + 267.497i 0.182985 + 0.316939i
\(845\) 0 0
\(846\) 0 0
\(847\) 202.574i 0.239167i
\(848\) −19.0702 33.0306i −0.0224885 0.0389512i
\(849\) 0 0
\(850\) 0 0
\(851\) −141.439 81.6600i −0.166204 0.0959577i
\(852\) 0 0
\(853\) 410.338 236.909i 0.481053 0.277736i −0.239802 0.970822i \(-0.577083\pi\)
0.720855 + 0.693086i \(0.243749\pi\)
\(854\) 674.172i 0.789429i
\(855\) 0 0
\(856\) 485.939 0.567685
\(857\) 458.381 + 793.939i 0.534867 + 0.926417i 0.999170 + 0.0407403i \(0.0129716\pi\)
−0.464303 + 0.885677i \(0.653695\pi\)
\(858\) 0 0
\(859\) 478.901 829.480i 0.557510 0.965635i −0.440194 0.897903i \(-0.645090\pi\)
0.997704 0.0677322i \(-0.0215764\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −855.684 + 494.030i −0.992673 + 0.573120i
\(863\) 524.200 0.607416 0.303708 0.952765i \(-0.401775\pi\)
0.303708 + 0.952765i \(0.401775\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 259.312 149.714i 0.299437 0.172880i
\(867\) 0 0
\(868\) −451.330 260.576i −0.519965 0.300202i
\(869\) −243.121 140.366i −0.279771 0.161526i
\(870\) 0 0
\(871\) −304.855 528.025i −0.350006 0.606228i
\(872\) −328.868 −0.377142
\(873\) 0 0
\(874\) 62.6969 0.0717356
\(875\) 0 0
\(876\) 0 0
\(877\) 872.742 + 503.878i 0.995145 + 0.574547i 0.906808 0.421543i \(-0.138511\pi\)
0.0883370 + 0.996091i \(0.471845\pi\)
\(878\) 197.893 342.760i 0.225390 0.390388i
\(879\) 0 0
\(880\) 0 0
\(881\) 1536.71i 1.74428i 0.489254 + 0.872141i \(0.337269\pi\)
−0.489254 + 0.872141i \(0.662731\pi\)
\(882\) 0 0
\(883\) 294.213i 0.333197i −0.986025 0.166599i \(-0.946722\pi\)
0.986025 0.166599i \(-0.0532784\pi\)
\(884\) −65.0602 + 37.5625i −0.0735975 + 0.0424915i
\(885\) 0 0
\(886\) 389.796 675.146i 0.439950 0.762016i
\(887\) 287.402 497.794i 0.324015 0.561211i −0.657297 0.753631i \(-0.728300\pi\)
0.981313 + 0.192420i \(0.0616337\pi\)
\(888\) 0 0
\(889\) 32.0306 + 55.4787i 0.0360299 + 0.0624057i
\(890\) 0 0
\(891\) 0 0
\(892\) 185.546i 0.208011i
\(893\) 33.1370 + 57.3949i 0.0371075 + 0.0642720i
\(894\) 0 0
\(895\) 0 0
\(896\) 62.2020 + 35.9124i 0.0694219 + 0.0400808i
\(897\) 0 0
\(898\) 664.872 383.864i 0.740391 0.427465i
\(899\) 135.004i 0.150171i
\(900\) 0 0
\(901\) −18.1837 −0.0201817
\(902\) 412.661 + 714.749i 0.457495 + 0.792405i
\(903\) 0 0
\(904\) 286.045 495.445i 0.316422 0.548059i
\(905\) 0 0
\(906\) 0 0
\(907\) 441.737 255.037i 0.487031 0.281187i −0.236311 0.971677i \(-0.575938\pi\)
0.723342 + 0.690490i \(0.242605\pi\)
\(908\) −339.604 −0.374013
\(909\) 0 0
\(910\) 0 0
\(911\) 803.127 463.685i 0.881588 0.508985i 0.0104064 0.999946i \(-0.496687\pi\)
0.871182 + 0.490961i \(0.163354\pi\)
\(912\) 0 0
\(913\) −718.564 414.863i −0.787036 0.454396i
\(914\) 113.123 + 65.3114i 0.123767 + 0.0714567i
\(915\) 0 0
\(916\) 407.545 + 705.888i 0.444918 + 0.770621i
\(917\) 31.4897 0.0343399
\(918\) 0 0
\(919\) 1240.63 1.34998 0.674991 0.737826i \(-0.264147\pi\)
0.674991 + 0.737826i \(0.264147\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −281.471 162.507i −0.305283 0.176255i
\(923\) 846.010 1465.33i 0.916587 1.58757i
\(924\) 0 0
\(925\) 0 0
\(926\) 722.384i 0.780112i
\(927\) 0 0
\(928\) 18.6061i 0.0200497i
\(929\) 293.576 169.496i 0.316013 0.182450i −0.333601 0.942714i \(-0.608264\pi\)
0.649614 + 0.760264i \(0.274931\pi\)
\(930\) 0 0
\(931\) 20.4245 35.3763i 0.0219382 0.0379981i
\(932\) −15.2562 + 26.4245i −0.0163693 + 0.0283525i
\(933\) 0 0
\(934\) −589.485 1021.02i −0.631140 1.09317i
\(935\) 0 0
\(936\) 0 0
\(937\) 1322.21i 1.41111i −0.708655 0.705556i \(-0.750698\pi\)
0.708655 0.705556i \(-0.249302\pi\)
\(938\) 138.957 + 240.680i 0.148141 + 0.256588i
\(939\) 0 0
\(940\) 0 0
\(941\) 310.984 + 179.547i 0.330482 + 0.190804i 0.656055 0.754713i \(-0.272224\pi\)
−0.325573 + 0.945517i \(0.605557\pi\)
\(942\) 0 0
\(943\) 505.404 291.795i 0.535953 0.309433i
\(944\) 366.110i 0.387828i
\(945\) 0 0
\(946\) 12.7423 0.0134697
\(947\) −387.896 671.855i −0.409605 0.709457i 0.585240 0.810860i \(-0.301000\pi\)
−0.994845 + 0.101403i \(0.967667\pi\)
\(948\) 0 0
\(949\) −946.347 + 1639.12i −0.997205 + 1.72721i
\(950\) 0 0
\(951\) 0 0
\(952\) 29.6552 17.1214i 0.0311504 0.0179847i
\(953\) 465.082 0.488019 0.244010 0.969773i \(-0.421537\pi\)
0.244010 + 0.969773i \(0.421537\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −97.9240 + 56.5364i −0.102431 + 0.0591385i
\(957\) 0 0
\(958\) −804.891 464.704i −0.840178 0.485077i
\(959\) −1290.28 744.942i −1.34544 0.776791i
\(960\) 0 0
\(961\) −361.863 626.765i −0.376548 0.652200i
\(962\) 481.989 0.501028
\(963\) 0 0
\(964\) 168.424 0.174714
\(965\) 0 0
\(966\) 0 0
\(967\) 1060.21 + 612.113i 1.09639 + 0.633002i 0.935271 0.353933i \(-0.115156\pi\)
0.161121 + 0.986935i \(0.448489\pi\)
\(968\) −45.1264 + 78.1612i −0.0466182 + 0.0807451i
\(969\) 0 0
\(970\) 0 0
\(971\) 658.702i 0.678375i −0.940719 0.339188i \(-0.889848\pi\)
0.940719 0.339188i \(-0.110152\pi\)
\(972\) 0 0
\(973\) 676.303i 0.695070i
\(974\) 430.702 248.666i 0.442199 0.255304i
\(975\) 0 0
\(976\) 150.182 260.122i 0.153875 0.266519i
\(977\) −759.170 + 1314.92i −0.777042 + 1.34588i 0.156597 + 0.987663i \(0.449948\pi\)
−0.933639 + 0.358214i \(0.883386\pi\)
\(978\) 0 0
\(979\) −195.272 338.222i −0.199461 0.345477i
\(980\) 0 0
\(981\) 0 0
\(982\) 347.074i 0.353436i
\(983\) −413.920 716.930i −0.421078 0.729329i 0.574967 0.818177i \(-0.305015\pi\)
−0.996045 + 0.0888477i \(0.971682\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −7.68215 4.43529i −0.00779122 0.00449826i
\(987\) 0 0
\(988\) −160.241 + 92.5153i −0.162187 + 0.0936390i
\(989\) 9.01020i 0.00911041i
\(990\) 0 0
\(991\) 429.546 0.433447 0.216723 0.976233i \(-0.430463\pi\)
0.216723 + 0.976233i \(0.430463\pi\)
\(992\) 116.094 + 201.081i 0.117030 + 0.202702i
\(993\) 0 0
\(994\) −385.621 + 667.915i −0.387949 + 0.671947i
\(995\) 0 0
\(996\) 0 0
\(997\) 601.886 347.499i 0.603697 0.348545i −0.166798 0.985991i \(-0.553343\pi\)
0.770495 + 0.637447i \(0.220009\pi\)
\(998\) −891.274 −0.893060
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.k.a.449.2 8
3.2 odd 2 450.3.k.a.149.3 8
5.2 odd 4 54.3.d.a.17.2 4
5.3 odd 4 1350.3.i.b.1151.1 4
5.4 even 2 inner 1350.3.k.a.449.3 8
9.2 odd 6 inner 1350.3.k.a.899.3 8
9.7 even 3 450.3.k.a.299.2 8
15.2 even 4 18.3.d.a.5.1 4
15.8 even 4 450.3.i.b.401.2 4
15.14 odd 2 450.3.k.a.149.2 8
20.7 even 4 432.3.q.d.17.2 4
40.27 even 4 1728.3.q.c.449.2 4
40.37 odd 4 1728.3.q.d.449.1 4
45.2 even 12 54.3.d.a.35.2 4
45.7 odd 12 18.3.d.a.11.1 yes 4
45.22 odd 12 162.3.b.a.161.3 4
45.29 odd 6 inner 1350.3.k.a.899.2 8
45.32 even 12 162.3.b.a.161.2 4
45.34 even 6 450.3.k.a.299.3 8
45.38 even 12 1350.3.i.b.251.1 4
45.43 odd 12 450.3.i.b.101.2 4
60.47 odd 4 144.3.q.c.113.1 4
120.77 even 4 576.3.q.f.257.1 4
120.107 odd 4 576.3.q.e.257.2 4
180.7 even 12 144.3.q.c.65.1 4
180.47 odd 12 432.3.q.d.305.2 4
180.67 even 12 1296.3.e.g.161.1 4
180.167 odd 12 1296.3.e.g.161.3 4
360.187 even 12 576.3.q.e.65.2 4
360.227 odd 12 1728.3.q.c.1601.2 4
360.277 odd 12 576.3.q.f.65.1 4
360.317 even 12 1728.3.q.d.1601.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.3.d.a.5.1 4 15.2 even 4
18.3.d.a.11.1 yes 4 45.7 odd 12
54.3.d.a.17.2 4 5.2 odd 4
54.3.d.a.35.2 4 45.2 even 12
144.3.q.c.65.1 4 180.7 even 12
144.3.q.c.113.1 4 60.47 odd 4
162.3.b.a.161.2 4 45.32 even 12
162.3.b.a.161.3 4 45.22 odd 12
432.3.q.d.17.2 4 20.7 even 4
432.3.q.d.305.2 4 180.47 odd 12
450.3.i.b.101.2 4 45.43 odd 12
450.3.i.b.401.2 4 15.8 even 4
450.3.k.a.149.2 8 15.14 odd 2
450.3.k.a.149.3 8 3.2 odd 2
450.3.k.a.299.2 8 9.7 even 3
450.3.k.a.299.3 8 45.34 even 6
576.3.q.e.65.2 4 360.187 even 12
576.3.q.e.257.2 4 120.107 odd 4
576.3.q.f.65.1 4 360.277 odd 12
576.3.q.f.257.1 4 120.77 even 4
1296.3.e.g.161.1 4 180.67 even 12
1296.3.e.g.161.3 4 180.167 odd 12
1350.3.i.b.251.1 4 45.38 even 12
1350.3.i.b.1151.1 4 5.3 odd 4
1350.3.k.a.449.2 8 1.1 even 1 trivial
1350.3.k.a.449.3 8 5.4 even 2 inner
1350.3.k.a.899.2 8 45.29 odd 6 inner
1350.3.k.a.899.3 8 9.2 odd 6 inner
1728.3.q.c.449.2 4 40.27 even 4
1728.3.q.c.1601.2 4 360.227 odd 12
1728.3.q.d.449.1 4 40.37 odd 4
1728.3.q.d.1601.1 4 360.317 even 12