Properties

Label 450.3.k.a.149.2
Level $450$
Weight $3$
Character 450.149
Analytic conductor $12.262$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,3,Mod(149,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.149");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 450.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2616118962\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.2
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 450.149
Dual form 450.3.k.a.299.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(1.73205 - 2.44949i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-4.22474 - 0.389270i) q^{6} +(5.49794 - 3.17423i) q^{7} +2.82843 q^{8} +(-3.00000 - 8.48528i) q^{9} +O(q^{10})\) \(q+(-0.707107 - 1.22474i) q^{2} +(1.73205 - 2.44949i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-4.22474 - 0.389270i) q^{6} +(5.49794 - 3.17423i) q^{7} +2.82843 q^{8} +(-3.00000 - 8.48528i) q^{9} +(8.17423 - 4.71940i) q^{11} +(2.51059 + 5.44949i) q^{12} +(17.0580 + 9.84847i) q^{13} +(-7.77526 - 4.48905i) q^{14} +(-2.00000 - 3.46410i) q^{16} -1.90702 q^{17} +(-8.27098 + 9.67423i) q^{18} -4.69694 q^{19} +(1.74745 - 18.9651i) q^{21} +(-11.5601 - 6.67423i) q^{22} +(4.71940 - 8.17423i) q^{23} +(4.89898 - 6.92820i) q^{24} -27.8557i q^{26} +(-25.9808 - 7.34847i) q^{27} +12.6969i q^{28} +(2.84847 - 1.64456i) q^{29} +(20.5227 - 35.5464i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(2.59808 - 28.1969i) q^{33} +(1.34847 + 2.33562i) q^{34} +(17.6969 + 3.28913i) q^{36} +17.3031i q^{37} +(3.32124 + 5.75255i) q^{38} +(53.6691 - 24.7255i) q^{39} +(-53.5454 - 30.9145i) q^{41} +(-24.4630 + 11.2702i) q^{42} +(-0.826701 + 0.477296i) q^{43} +18.8776i q^{44} -13.3485 q^{46} +(-7.05501 - 12.2196i) q^{47} +(-11.9494 - 1.10102i) q^{48} +(-4.34847 + 7.53177i) q^{49} +(-3.30306 + 4.67123i) q^{51} +(-34.1161 + 19.6969i) q^{52} +9.53512 q^{53} +(9.37117 + 37.0160i) q^{54} +(15.5505 - 8.97809i) q^{56} +(-8.13534 + 11.5051i) q^{57} +(-4.02834 - 2.32577i) q^{58} +(-79.2650 - 45.7637i) q^{59} +(37.5454 + 65.0306i) q^{61} -58.0470 q^{62} +(-43.4281 - 37.1288i) q^{63} +8.00000 q^{64} +(-36.3712 + 16.7563i) q^{66} +(-26.8075 - 15.4773i) q^{67} +(1.90702 - 3.30306i) q^{68} +(-11.8485 - 25.7183i) q^{69} -85.9026i q^{71} +(-8.48528 - 24.0000i) q^{72} +96.0908i q^{73} +(21.1918 - 12.2351i) q^{74} +(4.69694 - 8.13534i) q^{76} +(29.9609 - 51.8939i) q^{77} +(-68.2322 - 48.2474i) q^{78} +(14.8712 + 25.7576i) q^{79} +(-63.0000 + 50.9117i) q^{81} +87.4393i q^{82} +(43.9530 + 76.1288i) q^{83} +(31.1010 + 21.9917i) q^{84} +(1.16913 + 0.674999i) q^{86} +(0.905350 - 9.82577i) q^{87} +(23.1202 - 13.3485i) q^{88} -41.3766i q^{89} +125.045 q^{91} +(9.43879 + 16.3485i) q^{92} +(-51.5241 - 111.838i) q^{93} +(-9.97730 + 17.2812i) q^{94} +(7.10102 + 15.4135i) q^{96} +(83.0333 - 47.9393i) q^{97} +12.2993 q^{98} +(-64.5681 - 55.2025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 24 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 24 q^{6} - 24 q^{9} + 36 q^{11} - 72 q^{14} - 16 q^{16} + 80 q^{19} - 84 q^{21} - 36 q^{29} + 76 q^{31} - 48 q^{34} + 24 q^{36} + 204 q^{39} - 252 q^{41} - 48 q^{46} + 24 q^{49} - 144 q^{51} - 72 q^{54} + 144 q^{56} - 252 q^{59} + 124 q^{61} + 64 q^{64} - 144 q^{66} - 36 q^{69} - 144 q^{74} - 80 q^{76} - 28 q^{79} - 504 q^{81} + 288 q^{84} - 216 q^{86} + 824 q^{91} - 168 q^{94} + 96 q^{96} - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 1.73205 2.44949i 0.577350 0.816497i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) −4.22474 0.389270i −0.704124 0.0648783i
\(7\) 5.49794 3.17423i 0.785419 0.453462i −0.0529281 0.998598i \(-0.516855\pi\)
0.838347 + 0.545136i \(0.183522\pi\)
\(8\) 2.82843 0.353553
\(9\) −3.00000 8.48528i −0.333333 0.942809i
\(10\) 0 0
\(11\) 8.17423 4.71940i 0.743112 0.429036i −0.0800876 0.996788i \(-0.525520\pi\)
0.823200 + 0.567752i \(0.192187\pi\)
\(12\) 2.51059 + 5.44949i 0.209216 + 0.454124i
\(13\) 17.0580 + 9.84847i 1.31216 + 0.757575i 0.982453 0.186510i \(-0.0597176\pi\)
0.329704 + 0.944084i \(0.393051\pi\)
\(14\) −7.77526 4.48905i −0.555375 0.320646i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −1.90702 −0.112178 −0.0560889 0.998426i \(-0.517863\pi\)
−0.0560889 + 0.998426i \(0.517863\pi\)
\(18\) −8.27098 + 9.67423i −0.459499 + 0.537457i
\(19\) −4.69694 −0.247207 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(20\) 0 0
\(21\) 1.74745 18.9651i 0.0832118 0.903099i
\(22\) −11.5601 6.67423i −0.525460 0.303374i
\(23\) 4.71940 8.17423i 0.205191 0.355402i −0.745002 0.667062i \(-0.767552\pi\)
0.950194 + 0.311660i \(0.100885\pi\)
\(24\) 4.89898 6.92820i 0.204124 0.288675i
\(25\) 0 0
\(26\) 27.8557i 1.07137i
\(27\) −25.9808 7.34847i −0.962250 0.272166i
\(28\) 12.6969i 0.453462i
\(29\) 2.84847 1.64456i 0.0982231 0.0567091i −0.450084 0.892986i \(-0.648606\pi\)
0.548307 + 0.836277i \(0.315273\pi\)
\(30\) 0 0
\(31\) 20.5227 35.5464i 0.662023 1.14666i −0.318061 0.948070i \(-0.603032\pi\)
0.980083 0.198587i \(-0.0636351\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 2.59808 28.1969i 0.0787296 0.854453i
\(34\) 1.34847 + 2.33562i 0.0396609 + 0.0686946i
\(35\) 0 0
\(36\) 17.6969 + 3.28913i 0.491582 + 0.0913647i
\(37\) 17.3031i 0.467650i 0.972279 + 0.233825i \(0.0751243\pi\)
−0.972279 + 0.233825i \(0.924876\pi\)
\(38\) 3.32124 + 5.75255i 0.0874010 + 0.151383i
\(39\) 53.6691 24.7255i 1.37613 0.633986i
\(40\) 0 0
\(41\) −53.5454 30.9145i −1.30599 0.754011i −0.324562 0.945864i \(-0.605217\pi\)
−0.981424 + 0.191853i \(0.938550\pi\)
\(42\) −24.4630 + 11.2702i −0.582453 + 0.268337i
\(43\) −0.826701 + 0.477296i −0.0192256 + 0.0110999i −0.509582 0.860422i \(-0.670200\pi\)
0.490356 + 0.871522i \(0.336867\pi\)
\(44\) 18.8776i 0.429036i
\(45\) 0 0
\(46\) −13.3485 −0.290184
\(47\) −7.05501 12.2196i −0.150107 0.259992i 0.781160 0.624331i \(-0.214628\pi\)
−0.931267 + 0.364339i \(0.881295\pi\)
\(48\) −11.9494 1.10102i −0.248945 0.0229379i
\(49\) −4.34847 + 7.53177i −0.0887443 + 0.153710i
\(50\) 0 0
\(51\) −3.30306 + 4.67123i −0.0647659 + 0.0915928i
\(52\) −34.1161 + 19.6969i −0.656079 + 0.378787i
\(53\) 9.53512 0.179908 0.0899539 0.995946i \(-0.471328\pi\)
0.0899539 + 0.995946i \(0.471328\pi\)
\(54\) 9.37117 + 37.0160i 0.173540 + 0.685481i
\(55\) 0 0
\(56\) 15.5505 8.97809i 0.277688 0.160323i
\(57\) −8.13534 + 11.5051i −0.142725 + 0.201844i
\(58\) −4.02834 2.32577i −0.0694542 0.0400994i
\(59\) −79.2650 45.7637i −1.34348 0.775656i −0.356160 0.934425i \(-0.615914\pi\)
−0.987316 + 0.158769i \(0.949247\pi\)
\(60\) 0 0
\(61\) 37.5454 + 65.0306i 0.615498 + 1.06607i 0.990297 + 0.138968i \(0.0443786\pi\)
−0.374798 + 0.927106i \(0.622288\pi\)
\(62\) −58.0470 −0.936241
\(63\) −43.4281 37.1288i −0.689335 0.589346i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) −36.3712 + 16.7563i −0.551078 + 0.253883i
\(67\) −26.8075 15.4773i −0.400111 0.231004i 0.286421 0.958104i \(-0.407535\pi\)
−0.686532 + 0.727100i \(0.740868\pi\)
\(68\) 1.90702 3.30306i 0.0280445 0.0485744i
\(69\) −11.8485 25.7183i −0.171717 0.372729i
\(70\) 0 0
\(71\) 85.9026i 1.20990i −0.796265 0.604948i \(-0.793194\pi\)
0.796265 0.604948i \(-0.206806\pi\)
\(72\) −8.48528 24.0000i −0.117851 0.333333i
\(73\) 96.0908i 1.31631i 0.752881 + 0.658156i \(0.228663\pi\)
−0.752881 + 0.658156i \(0.771337\pi\)
\(74\) 21.1918 12.2351i 0.286376 0.165339i
\(75\) 0 0
\(76\) 4.69694 8.13534i 0.0618018 0.107044i
\(77\) 29.9609 51.8939i 0.389103 0.673946i
\(78\) −68.2322 48.2474i −0.874772 0.618557i
\(79\) 14.8712 + 25.7576i 0.188243 + 0.326046i 0.944664 0.328038i \(-0.106388\pi\)
−0.756422 + 0.654084i \(0.773054\pi\)
\(80\) 0 0
\(81\) −63.0000 + 50.9117i −0.777778 + 0.628539i
\(82\) 87.4393i 1.06633i
\(83\) 43.9530 + 76.1288i 0.529554 + 0.917215i 0.999406 + 0.0344693i \(0.0109741\pi\)
−0.469852 + 0.882745i \(0.655693\pi\)
\(84\) 31.1010 + 21.9917i 0.370250 + 0.261806i
\(85\) 0 0
\(86\) 1.16913 + 0.674999i 0.0135946 + 0.00784882i
\(87\) 0.905350 9.82577i 0.0104063 0.112940i
\(88\) 23.1202 13.3485i 0.262730 0.151687i
\(89\) 41.3766i 0.464905i −0.972608 0.232453i \(-0.925325\pi\)
0.972608 0.232453i \(-0.0746751\pi\)
\(90\) 0 0
\(91\) 125.045 1.37413
\(92\) 9.43879 + 16.3485i 0.102596 + 0.177701i
\(93\) −51.5241 111.838i −0.554023 1.20256i
\(94\) −9.97730 + 17.2812i −0.106141 + 0.183842i
\(95\) 0 0
\(96\) 7.10102 + 15.4135i 0.0739690 + 0.160557i
\(97\) 83.0333 47.9393i 0.856013 0.494219i −0.00666202 0.999978i \(-0.502121\pi\)
0.862675 + 0.505758i \(0.168787\pi\)
\(98\) 12.2993 0.125503
\(99\) −64.5681 55.2025i −0.652203 0.557601i
\(100\) 0 0
\(101\) −136.772 + 78.9656i −1.35418 + 0.781838i −0.988832 0.149032i \(-0.952384\pi\)
−0.365350 + 0.930870i \(0.619051\pi\)
\(102\) 8.05669 + 0.742346i 0.0789871 + 0.00727790i
\(103\) 25.2327 + 14.5681i 0.244978 + 0.141438i 0.617462 0.786600i \(-0.288161\pi\)
−0.372485 + 0.928038i \(0.621494\pi\)
\(104\) 48.2474 + 27.8557i 0.463918 + 0.267843i
\(105\) 0 0
\(106\) −6.74235 11.6781i −0.0636070 0.110171i
\(107\) 171.805 1.60566 0.802829 0.596210i \(-0.203327\pi\)
0.802829 + 0.596210i \(0.203327\pi\)
\(108\) 38.7087 37.6515i 0.358414 0.348625i
\(109\) −116.272 −1.06672 −0.533360 0.845888i \(-0.679071\pi\)
−0.533360 + 0.845888i \(0.679071\pi\)
\(110\) 0 0
\(111\) 42.3837 + 29.9698i 0.381835 + 0.269998i
\(112\) −21.9917 12.6969i −0.196355 0.113366i
\(113\) 101.132 175.166i 0.894976 1.55014i 0.0611424 0.998129i \(-0.480526\pi\)
0.833834 0.552015i \(-0.186141\pi\)
\(114\) 19.8434 + 1.82838i 0.174065 + 0.0160384i
\(115\) 0 0
\(116\) 6.57826i 0.0567091i
\(117\) 32.3929 174.288i 0.276862 1.48964i
\(118\) 129.439i 1.09694i
\(119\) −10.4847 + 6.05334i −0.0881067 + 0.0508684i
\(120\) 0 0
\(121\) −15.9546 + 27.6342i −0.131856 + 0.228382i
\(122\) 53.0972 91.9671i 0.435223 0.753829i
\(123\) −168.468 + 77.6135i −1.36966 + 0.631004i
\(124\) 41.0454 + 71.0927i 0.331011 + 0.573328i
\(125\) 0 0
\(126\) −14.7650 + 79.4424i −0.117183 + 0.630495i
\(127\) 10.0908i 0.0794552i 0.999211 + 0.0397276i \(0.0126490\pi\)
−0.999211 + 0.0397276i \(0.987351\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) −0.262756 + 2.85170i −0.00203687 + 0.0221062i
\(130\) 0 0
\(131\) 4.29567 + 2.48010i 0.0327913 + 0.0189321i 0.516306 0.856404i \(-0.327307\pi\)
−0.483515 + 0.875336i \(0.660640\pi\)
\(132\) 46.2405 + 32.6969i 0.350306 + 0.247704i
\(133\) −25.8235 + 14.9092i −0.194161 + 0.112099i
\(134\) 43.7764i 0.326690i
\(135\) 0 0
\(136\) −5.39388 −0.0396609
\(137\) 117.342 + 203.242i 0.856511 + 1.48352i 0.875236 + 0.483696i \(0.160706\pi\)
−0.0187249 + 0.999825i \(0.505961\pi\)
\(138\) −23.1202 + 32.6969i −0.167538 + 0.236934i
\(139\) 53.2650 92.2578i 0.383202 0.663725i −0.608316 0.793695i \(-0.708155\pi\)
0.991518 + 0.129970i \(0.0414881\pi\)
\(140\) 0 0
\(141\) −42.1515 3.88386i −0.298947 0.0275451i
\(142\) −105.209 + 60.7423i −0.740907 + 0.427763i
\(143\) 185.915 1.30011
\(144\) −23.3939 + 27.3629i −0.162457 + 0.190020i
\(145\) 0 0
\(146\) 117.687 67.9465i 0.806074 0.465387i
\(147\) 10.9172 + 23.6969i 0.0742668 + 0.161204i
\(148\) −29.9698 17.3031i −0.202499 0.116913i
\(149\) 91.0301 + 52.5563i 0.610940 + 0.352727i 0.773333 0.634000i \(-0.218588\pi\)
−0.162393 + 0.986726i \(0.551921\pi\)
\(150\) 0 0
\(151\) 142.614 + 247.014i 0.944460 + 1.63585i 0.756828 + 0.653614i \(0.226748\pi\)
0.187632 + 0.982239i \(0.439919\pi\)
\(152\) −13.2849 −0.0874010
\(153\) 5.72107 + 16.1816i 0.0373926 + 0.105762i
\(154\) −84.7423 −0.550275
\(155\) 0 0
\(156\) −10.8434 + 117.683i −0.0695088 + 0.754379i
\(157\) 170.764 + 98.5908i 1.08767 + 0.627967i 0.932955 0.359992i \(-0.117221\pi\)
0.154715 + 0.987959i \(0.450554\pi\)
\(158\) 21.0310 36.4268i 0.133108 0.230549i
\(159\) 16.5153 23.3562i 0.103870 0.146894i
\(160\) 0 0
\(161\) 59.9219i 0.372186i
\(162\) 106.902 + 41.1589i 0.659886 + 0.254067i
\(163\) 249.060i 1.52798i 0.645230 + 0.763988i \(0.276762\pi\)
−0.645230 + 0.763988i \(0.723238\pi\)
\(164\) 107.091 61.8289i 0.652993 0.377006i
\(165\) 0 0
\(166\) 62.1589 107.662i 0.374451 0.648569i
\(167\) 24.2182 41.9472i 0.145019 0.251181i −0.784361 0.620305i \(-0.787009\pi\)
0.929380 + 0.369124i \(0.120342\pi\)
\(168\) 4.94253 53.6413i 0.0294198 0.319294i
\(169\) 109.485 + 189.633i 0.647838 + 1.12209i
\(170\) 0 0
\(171\) 14.0908 + 39.8548i 0.0824024 + 0.233069i
\(172\) 1.90918i 0.0110999i
\(173\) −50.2206 86.9847i −0.290293 0.502802i 0.683586 0.729870i \(-0.260419\pi\)
−0.973879 + 0.227068i \(0.927086\pi\)
\(174\) −12.6742 + 5.83904i −0.0728404 + 0.0335577i
\(175\) 0 0
\(176\) −32.6969 18.8776i −0.185778 0.107259i
\(177\) −249.389 + 114.894i −1.40898 + 0.649118i
\(178\) −50.6757 + 29.2577i −0.284695 + 0.164369i
\(179\) 285.071i 1.59257i 0.604919 + 0.796287i \(0.293206\pi\)
−0.604919 + 0.796287i \(0.706794\pi\)
\(180\) 0 0
\(181\) 37.1214 0.205091 0.102545 0.994728i \(-0.467301\pi\)
0.102545 + 0.994728i \(0.467301\pi\)
\(182\) −88.4205 153.149i −0.485827 0.841476i
\(183\) 224.322 + 20.6691i 1.22580 + 0.112946i
\(184\) 13.3485 23.1202i 0.0725460 0.125653i
\(185\) 0 0
\(186\) −100.540 + 142.185i −0.540539 + 0.764438i
\(187\) −15.5885 + 9.00000i −0.0833607 + 0.0481283i
\(188\) 28.2201 0.150107
\(189\) −166.166 + 42.0676i −0.879187 + 0.222580i
\(190\) 0 0
\(191\) −15.5227 + 8.96204i −0.0812707 + 0.0469217i −0.540085 0.841611i \(-0.681608\pi\)
0.458814 + 0.888532i \(0.348274\pi\)
\(192\) 13.8564 19.5959i 0.0721688 0.102062i
\(193\) −82.6657 47.7270i −0.428319 0.247290i 0.270311 0.962773i \(-0.412873\pi\)
−0.698630 + 0.715483i \(0.746207\pi\)
\(194\) −117.427 67.7964i −0.605293 0.349466i
\(195\) 0 0
\(196\) −8.69694 15.0635i −0.0443721 0.0768548i
\(197\) −160.363 −0.814026 −0.407013 0.913422i \(-0.633430\pi\)
−0.407013 + 0.913422i \(0.633430\pi\)
\(198\) −21.9524 + 118.114i −0.110871 + 0.596533i
\(199\) −6.51531 −0.0327402 −0.0163701 0.999866i \(-0.505211\pi\)
−0.0163701 + 0.999866i \(0.505211\pi\)
\(200\) 0 0
\(201\) −84.3434 + 38.8571i −0.419619 + 0.193319i
\(202\) 193.425 + 111.674i 0.957552 + 0.552843i
\(203\) 10.4405 18.0834i 0.0514309 0.0890809i
\(204\) −4.78775 10.3923i −0.0234694 0.0509427i
\(205\) 0 0
\(206\) 41.2048i 0.200024i
\(207\) −83.5189 15.5227i −0.403473 0.0749889i
\(208\) 78.7878i 0.378787i
\(209\) −38.3939 + 22.1667i −0.183703 + 0.106061i
\(210\) 0 0
\(211\) 77.2196 133.748i 0.365970 0.633878i −0.622961 0.782253i \(-0.714071\pi\)
0.988931 + 0.148374i \(0.0474040\pi\)
\(212\) −9.53512 + 16.5153i −0.0449770 + 0.0779024i
\(213\) −210.418 148.788i −0.987876 0.698534i
\(214\) −121.485 210.418i −0.567685 0.983260i
\(215\) 0 0
\(216\) −73.4847 20.7846i −0.340207 0.0962250i
\(217\) 260.576i 1.20081i
\(218\) 82.2170 + 142.404i 0.377142 + 0.653230i
\(219\) 235.373 + 166.434i 1.07476 + 0.759973i
\(220\) 0 0
\(221\) −32.5301 18.7813i −0.147195 0.0849831i
\(222\) 6.73555 73.1010i 0.0303403 0.329284i
\(223\) −80.3437 + 46.3865i −0.360286 + 0.208011i −0.669206 0.743077i \(-0.733366\pi\)
0.308920 + 0.951088i \(0.400032\pi\)
\(224\) 35.9124i 0.160323i
\(225\) 0 0
\(226\) −286.045 −1.26569
\(227\) 84.9010 + 147.053i 0.374013 + 0.647810i 0.990179 0.139807i \(-0.0446482\pi\)
−0.616166 + 0.787617i \(0.711315\pi\)
\(228\) −11.7921 25.5959i −0.0517197 0.112263i
\(229\) 203.772 352.944i 0.889836 1.54124i 0.0497675 0.998761i \(-0.484152\pi\)
0.840068 0.542480i \(-0.182515\pi\)
\(230\) 0 0
\(231\) −75.2196 163.272i −0.325626 0.706805i
\(232\) 8.05669 4.65153i 0.0347271 0.0200497i
\(233\) 15.2562 0.0654772 0.0327386 0.999464i \(-0.489577\pi\)
0.0327386 + 0.999464i \(0.489577\pi\)
\(234\) −236.363 + 83.5670i −1.01010 + 0.357124i
\(235\) 0 0
\(236\) 158.530 91.5274i 0.671738 0.387828i
\(237\) 88.8507 + 8.18673i 0.374897 + 0.0345432i
\(238\) 14.8276 + 8.56072i 0.0623008 + 0.0359694i
\(239\) −48.9620 28.2682i −0.204862 0.118277i 0.394059 0.919085i \(-0.371070\pi\)
−0.598921 + 0.800808i \(0.704404\pi\)
\(240\) 0 0
\(241\) −42.1061 72.9299i −0.174714 0.302614i 0.765348 0.643617i \(-0.222567\pi\)
−0.940062 + 0.341003i \(0.889233\pi\)
\(242\) 45.1264 0.186473
\(243\) 15.5885 + 242.499i 0.0641500 + 0.997940i
\(244\) −150.182 −0.615498
\(245\) 0 0
\(246\) 214.182 + 151.449i 0.870657 + 0.615647i
\(247\) −80.1206 46.2577i −0.324375 0.187278i
\(248\) 58.0470 100.540i 0.234060 0.405404i
\(249\) 262.606 + 24.1966i 1.05464 + 0.0971750i
\(250\) 0 0
\(251\) 218.903i 0.872123i 0.899917 + 0.436062i \(0.143627\pi\)
−0.899917 + 0.436062i \(0.856373\pi\)
\(252\) 107.737 38.0908i 0.427528 0.151154i
\(253\) 89.0908i 0.352138i
\(254\) 12.3587 7.13528i 0.0486562 0.0280917i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 6.41212 11.1061i 0.0249499 0.0432145i −0.853281 0.521452i \(-0.825391\pi\)
0.878231 + 0.478237i \(0.158724\pi\)
\(258\) 3.67840 1.69464i 0.0142574 0.00656839i
\(259\) 54.9240 + 95.1311i 0.212062 + 0.367302i
\(260\) 0 0
\(261\) −22.5000 19.2364i −0.0862069 0.0737026i
\(262\) 7.01479i 0.0267740i
\(263\) −168.232 291.386i −0.639666 1.10793i −0.985506 0.169640i \(-0.945739\pi\)
0.345840 0.938293i \(-0.387594\pi\)
\(264\) 7.34847 79.7530i 0.0278351 0.302095i
\(265\) 0 0
\(266\) 36.5199 + 21.0848i 0.137293 + 0.0792661i
\(267\) −101.351 71.6663i −0.379594 0.268413i
\(268\) 53.6149 30.9546i 0.200056 0.115502i
\(269\) 60.4468i 0.224709i −0.993668 0.112355i \(-0.964161\pi\)
0.993668 0.112355i \(-0.0358393\pi\)
\(270\) 0 0
\(271\) 274.636 1.01342 0.506708 0.862118i \(-0.330862\pi\)
0.506708 + 0.862118i \(0.330862\pi\)
\(272\) 3.81405 + 6.60612i 0.0140222 + 0.0242872i
\(273\) 216.585 306.297i 0.793352 1.12197i
\(274\) 165.947 287.428i 0.605645 1.04901i
\(275\) 0 0
\(276\) 56.3939 + 5.19615i 0.204326 + 0.0188266i
\(277\) −42.4352 + 24.5000i −0.153196 + 0.0884477i −0.574638 0.818407i \(-0.694857\pi\)
0.421442 + 0.906855i \(0.361524\pi\)
\(278\) −150.656 −0.541929
\(279\) −363.189 67.5018i −1.30175 0.241942i
\(280\) 0 0
\(281\) −297.121 + 171.543i −1.05737 + 0.610473i −0.924704 0.380688i \(-0.875687\pi\)
−0.132666 + 0.991161i \(0.542354\pi\)
\(282\) 25.0489 + 54.3712i 0.0888259 + 0.192806i
\(283\) −297.401 171.704i −1.05089 0.606729i −0.127988 0.991776i \(-0.540852\pi\)
−0.922897 + 0.385047i \(0.874185\pi\)
\(284\) 148.788 + 85.9026i 0.523901 + 0.302474i
\(285\) 0 0
\(286\) −131.462 227.699i −0.459657 0.796150i
\(287\) −392.519 −1.36766
\(288\) 50.0545 + 9.30306i 0.173800 + 0.0323023i
\(289\) −285.363 −0.987416
\(290\) 0 0
\(291\) 26.3911 286.422i 0.0906910 0.984270i
\(292\) −166.434 96.0908i −0.569980 0.329078i
\(293\) −143.226 + 248.076i −0.488828 + 0.846674i −0.999917 0.0128532i \(-0.995909\pi\)
0.511090 + 0.859527i \(0.329242\pi\)
\(294\) 21.3031 30.1271i 0.0724594 0.102473i
\(295\) 0 0
\(296\) 48.9404i 0.165339i
\(297\) −247.053 + 62.5454i −0.831829 + 0.210591i
\(298\) 148.652i 0.498831i
\(299\) 161.007 92.9577i 0.538486 0.310895i
\(300\) 0 0
\(301\) −3.03010 + 5.24829i −0.0100668 + 0.0174362i
\(302\) 201.686 349.330i 0.667834 1.15672i
\(303\) −43.4714 + 471.795i −0.143470 + 1.55708i
\(304\) 9.39388 + 16.2707i 0.0309009 + 0.0535219i
\(305\) 0 0
\(306\) 15.7730 18.4490i 0.0515456 0.0602908i
\(307\) 154.091i 0.501924i 0.967997 + 0.250962i \(0.0807470\pi\)
−0.967997 + 0.250962i \(0.919253\pi\)
\(308\) 59.9219 + 103.788i 0.194552 + 0.336973i
\(309\) 79.3888 36.5746i 0.256922 0.118364i
\(310\) 0 0
\(311\) −62.3411 35.9926i −0.200454 0.115732i 0.396413 0.918072i \(-0.370255\pi\)
−0.596867 + 0.802340i \(0.703588\pi\)
\(312\) 151.799 69.9342i 0.486536 0.224148i
\(313\) 318.356 183.803i 1.01711 0.587230i 0.103846 0.994593i \(-0.466885\pi\)
0.913266 + 0.407363i \(0.133552\pi\)
\(314\) 278.857i 0.888079i
\(315\) 0 0
\(316\) −59.4847 −0.188243
\(317\) −53.7987 93.1821i −0.169712 0.293950i 0.768607 0.639722i \(-0.220950\pi\)
−0.938319 + 0.345772i \(0.887617\pi\)
\(318\) −40.2834 3.71173i −0.126677 0.0116721i
\(319\) 15.5227 26.8861i 0.0486605 0.0842825i
\(320\) 0 0
\(321\) 297.576 420.835i 0.927027 1.31101i
\(322\) −73.3890 + 42.3712i −0.227916 + 0.131587i
\(323\) 8.95717 0.0277312
\(324\) −25.1816 160.031i −0.0777211 0.493922i
\(325\) 0 0
\(326\) 305.035 176.112i 0.935691 0.540221i
\(327\) −201.390 + 284.808i −0.615871 + 0.870973i
\(328\) −151.449 87.4393i −0.461736 0.266583i
\(329\) −77.5760 44.7885i −0.235793 0.136135i
\(330\) 0 0
\(331\) −8.59873 14.8934i −0.0259780 0.0449953i 0.852744 0.522329i \(-0.174937\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(332\) −175.812 −0.529554
\(333\) 146.821 51.9092i 0.440905 0.155883i
\(334\) −68.4995 −0.205088
\(335\) 0 0
\(336\) −69.1918 + 31.8768i −0.205928 + 0.0948714i
\(337\) −315.574 182.197i −0.936422 0.540644i −0.0475854 0.998867i \(-0.515153\pi\)
−0.888837 + 0.458223i \(0.848486\pi\)
\(338\) 154.835 268.182i 0.458091 0.793437i
\(339\) −253.902 551.120i −0.748973 1.62572i
\(340\) 0 0
\(341\) 387.419i 1.13613i
\(342\) 38.8483 45.4393i 0.113592 0.132863i
\(343\) 366.287i 1.06789i
\(344\) −2.33826 + 1.35000i −0.00679728 + 0.00392441i
\(345\) 0 0
\(346\) −71.0227 + 123.015i −0.205268 + 0.355534i
\(347\) −291.697 + 505.234i −0.840626 + 1.45601i 0.0487402 + 0.998811i \(0.484479\pi\)
−0.889366 + 0.457196i \(0.848854\pi\)
\(348\) 16.1134 + 11.3939i 0.0463028 + 0.0327410i
\(349\) 156.379 + 270.856i 0.448076 + 0.776091i 0.998261 0.0589524i \(-0.0187760\pi\)
−0.550185 + 0.835043i \(0.685443\pi\)
\(350\) 0 0
\(351\) −370.810 381.221i −1.05644 1.08610i
\(352\) 53.3939i 0.151687i
\(353\) 18.8078 + 32.5760i 0.0532798 + 0.0922834i 0.891435 0.453148i \(-0.149699\pi\)
−0.838155 + 0.545431i \(0.816366\pi\)
\(354\) 317.060 + 224.195i 0.895650 + 0.633320i
\(355\) 0 0
\(356\) 71.6663 + 41.3766i 0.201310 + 0.116226i
\(357\) −3.33243 + 36.1668i −0.00933453 + 0.101308i
\(358\) 349.139 201.576i 0.975249 0.563060i
\(359\) 294.028i 0.819019i 0.912306 + 0.409510i \(0.134300\pi\)
−0.912306 + 0.409510i \(0.865700\pi\)
\(360\) 0 0
\(361\) −338.939 −0.938889
\(362\) −26.2488 45.4643i −0.0725105 0.125592i
\(363\) 40.0554 + 86.9444i 0.110346 + 0.239516i
\(364\) −125.045 + 216.585i −0.343531 + 0.595014i
\(365\) 0 0
\(366\) −133.305 289.353i −0.364222 0.790581i
\(367\) −28.7755 + 16.6135i −0.0784072 + 0.0452684i −0.538691 0.842503i \(-0.681081\pi\)
0.460284 + 0.887772i \(0.347748\pi\)
\(368\) −37.7552 −0.102596
\(369\) −101.682 + 547.091i −0.275560 + 1.48263i
\(370\) 0 0
\(371\) 52.4235 30.2667i 0.141303 0.0815814i
\(372\) 245.234 + 22.5959i 0.659230 + 0.0607417i
\(373\) −194.881 112.515i −0.522470 0.301648i 0.215475 0.976509i \(-0.430870\pi\)
−0.737945 + 0.674861i \(0.764203\pi\)
\(374\) 22.0454 + 12.7279i 0.0589449 + 0.0340319i
\(375\) 0 0
\(376\) −19.9546 34.5624i −0.0530707 0.0919212i
\(377\) 64.7858 0.171846
\(378\) 169.019 + 173.765i 0.447141 + 0.459696i
\(379\) 166.334 0.438875 0.219438 0.975627i \(-0.429578\pi\)
0.219438 + 0.975627i \(0.429578\pi\)
\(380\) 0 0
\(381\) 24.7173 + 17.4778i 0.0648749 + 0.0458735i
\(382\) 21.9524 + 12.6742i 0.0574671 + 0.0331786i
\(383\) −368.493 + 638.249i −0.962124 + 1.66645i −0.244972 + 0.969530i \(0.578779\pi\)
−0.717152 + 0.696917i \(0.754555\pi\)
\(384\) −33.7980 3.11416i −0.0880155 0.00810978i
\(385\) 0 0
\(386\) 134.992i 0.349721i
\(387\) 6.53010 + 5.58290i 0.0168736 + 0.0144261i
\(388\) 191.757i 0.494219i
\(389\) 146.682 84.6867i 0.377074 0.217704i −0.299471 0.954106i \(-0.596810\pi\)
0.676544 + 0.736402i \(0.263477\pi\)
\(390\) 0 0
\(391\) −9.00000 + 15.5885i −0.0230179 + 0.0398682i
\(392\) −12.2993 + 21.3031i −0.0313758 + 0.0543445i
\(393\) 13.5153 6.22652i 0.0343901 0.0158436i
\(394\) 113.394 + 196.404i 0.287802 + 0.498487i
\(395\) 0 0
\(396\) 160.182 56.6328i 0.404499 0.143012i
\(397\) 256.272i 0.645523i −0.946480 0.322761i \(-0.895389\pi\)
0.946480 0.322761i \(-0.104611\pi\)
\(398\) 4.60702 + 7.97959i 0.0115754 + 0.0200492i
\(399\) −8.20766 + 89.0778i −0.0205706 + 0.223253i
\(400\) 0 0
\(401\) 226.364 + 130.691i 0.564498 + 0.325913i 0.754949 0.655784i \(-0.227662\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(402\) 107.230 + 75.8230i 0.266741 + 0.188614i
\(403\) 700.155 404.234i 1.73736 1.00306i
\(404\) 315.862i 0.781838i
\(405\) 0 0
\(406\) −29.5301 −0.0727342
\(407\) 81.6600 + 141.439i 0.200639 + 0.347517i
\(408\) −9.34247 + 13.2122i −0.0228982 + 0.0323830i
\(409\) −221.894 + 384.331i −0.542528 + 0.939686i 0.456230 + 0.889862i \(0.349199\pi\)
−0.998758 + 0.0498240i \(0.984134\pi\)
\(410\) 0 0
\(411\) 701.082 + 64.5980i 1.70580 + 0.157173i
\(412\) −50.4654 + 29.1362i −0.122489 + 0.0707190i
\(413\) −581.059 −1.40692
\(414\) 40.0454 + 113.266i 0.0967280 + 0.273588i
\(415\) 0 0
\(416\) −96.4949 + 55.7114i −0.231959 + 0.133922i
\(417\) −133.727 290.267i −0.320688 0.696085i
\(418\) 54.2971 + 31.3485i 0.129897 + 0.0749963i
\(419\) −9.32525 5.38394i −0.0222560 0.0128495i 0.488831 0.872379i \(-0.337424\pi\)
−0.511087 + 0.859529i \(0.670757\pi\)
\(420\) 0 0
\(421\) −127.152 220.233i −0.302023 0.523119i 0.674571 0.738210i \(-0.264328\pi\)
−0.976594 + 0.215091i \(0.930995\pi\)
\(422\) −218.410 −0.517560
\(423\) −82.5221 + 96.5227i −0.195088 + 0.228186i
\(424\) 26.9694 0.0636070
\(425\) 0 0
\(426\) −33.4393 + 362.917i −0.0784960 + 0.851917i
\(427\) 412.844 + 238.356i 0.966849 + 0.558210i
\(428\) −171.805 + 297.576i −0.401414 + 0.695270i
\(429\) 322.015 455.398i 0.750617 1.06153i
\(430\) 0 0
\(431\) 698.663i 1.62103i 0.585719 + 0.810514i \(0.300812\pi\)
−0.585719 + 0.810514i \(0.699188\pi\)
\(432\) 26.5057 + 104.697i 0.0613557 + 0.242354i
\(433\) 211.728i 0.488978i −0.969652 0.244489i \(-0.921380\pi\)
0.969652 0.244489i \(-0.0786202\pi\)
\(434\) −319.139 + 184.255i −0.735342 + 0.424550i
\(435\) 0 0
\(436\) 116.272 201.390i 0.266680 0.461903i
\(437\) −22.1667 + 38.3939i −0.0507247 + 0.0878578i
\(438\) 37.4052 405.959i 0.0854001 0.926847i
\(439\) 139.931 + 242.368i 0.318750 + 0.552092i 0.980228 0.197874i \(-0.0634035\pi\)
−0.661477 + 0.749965i \(0.730070\pi\)
\(440\) 0 0
\(441\) 76.9546 + 14.3027i 0.174500 + 0.0324324i
\(442\) 53.1214i 0.120184i
\(443\) 275.627 + 477.400i 0.622183 + 1.07765i 0.989078 + 0.147391i \(0.0470874\pi\)
−0.366895 + 0.930262i \(0.619579\pi\)
\(444\) −94.2929 + 43.4409i −0.212371 + 0.0978398i
\(445\) 0 0
\(446\) 113.623 + 65.6004i 0.254761 + 0.147086i
\(447\) 286.405 131.947i 0.640727 0.295184i
\(448\) 43.9835 25.3939i 0.0981774 0.0566828i
\(449\) 542.865i 1.20905i −0.796585 0.604527i \(-0.793362\pi\)
0.796585 0.604527i \(-0.206638\pi\)
\(450\) 0 0
\(451\) −583.590 −1.29399
\(452\) 202.265 + 350.333i 0.447488 + 0.775072i
\(453\) 852.072 + 78.5102i 1.88095 + 0.173312i
\(454\) 120.068 207.964i 0.264467 0.458071i
\(455\) 0 0
\(456\) −23.0102 + 32.5413i −0.0504610 + 0.0713626i
\(457\) 79.9898 46.1821i 0.175032 0.101055i −0.409924 0.912120i \(-0.634445\pi\)
0.584957 + 0.811065i \(0.301112\pi\)
\(458\) −576.356 −1.25842
\(459\) 49.5459 + 14.0137i 0.107943 + 0.0305309i
\(460\) 0 0
\(461\) −199.030 + 114.910i −0.431736 + 0.249263i −0.700086 0.714059i \(-0.746855\pi\)
0.268350 + 0.963321i \(0.413522\pi\)
\(462\) −146.778 + 207.576i −0.317701 + 0.449298i
\(463\) −442.368 255.401i −0.955438 0.551623i −0.0606723 0.998158i \(-0.519324\pi\)
−0.894766 + 0.446535i \(0.852658\pi\)
\(464\) −11.3939 6.57826i −0.0245558 0.0141773i
\(465\) 0 0
\(466\) −10.7878 18.6849i −0.0231497 0.0400964i
\(467\) 833.657 1.78513 0.892567 0.450915i \(-0.148902\pi\)
0.892567 + 0.450915i \(0.148902\pi\)
\(468\) 269.482 + 230.394i 0.575817 + 0.492295i
\(469\) −196.514 −0.419007
\(470\) 0 0
\(471\) 537.270 247.521i 1.14070 0.525523i
\(472\) −224.195 129.439i −0.474990 0.274236i
\(473\) −4.50510 + 7.80306i −0.00952452 + 0.0164970i
\(474\) −52.8003 114.608i −0.111393 0.241790i
\(475\) 0 0
\(476\) 24.2134i 0.0508684i
\(477\) −28.6054 80.9082i −0.0599693 0.169619i
\(478\) 79.9546i 0.167269i
\(479\) −569.144 + 328.595i −1.18819 + 0.686003i −0.957895 0.287118i \(-0.907303\pi\)
−0.230296 + 0.973121i \(0.573969\pi\)
\(480\) 0 0
\(481\) −170.409 + 295.156i −0.354280 + 0.613631i
\(482\) −59.5471 + 103.139i −0.123542 + 0.213980i
\(483\) −146.778 103.788i −0.303888 0.214881i
\(484\) −31.9092 55.2683i −0.0659281 0.114191i
\(485\) 0 0
\(486\) 285.977 190.565i 0.588431 0.392109i
\(487\) 351.666i 0.722107i −0.932545 0.361054i \(-0.882417\pi\)
0.932545 0.361054i \(-0.117583\pi\)
\(488\) 106.194 + 183.934i 0.217612 + 0.376914i
\(489\) 610.070 + 431.385i 1.24759 + 0.882178i
\(490\) 0 0
\(491\) 212.539 + 122.709i 0.432869 + 0.249917i 0.700568 0.713586i \(-0.252930\pi\)
−0.267699 + 0.963503i \(0.586263\pi\)
\(492\) 34.0374 369.409i 0.0691818 0.750831i
\(493\) −5.43210 + 3.13622i −0.0110185 + 0.00636151i
\(494\) 130.836i 0.264851i
\(495\) 0 0
\(496\) −164.182 −0.331011
\(497\) −272.675 472.287i −0.548642 0.950276i
\(498\) −156.056 338.734i −0.313365 0.680190i
\(499\) 315.113 545.792i 0.631489 1.09377i −0.355758 0.934578i \(-0.615777\pi\)
0.987247 0.159193i \(-0.0508892\pi\)
\(500\) 0 0
\(501\) −60.8020 131.977i −0.121361 0.263427i
\(502\) 268.100 154.788i 0.534064 0.308342i
\(503\) 286.891 0.570360 0.285180 0.958474i \(-0.407947\pi\)
0.285180 + 0.958474i \(0.407947\pi\)
\(504\) −122.833 105.016i −0.243717 0.208365i
\(505\) 0 0
\(506\) −109.114 + 62.9967i −0.215639 + 0.124499i
\(507\) 654.137 + 60.2724i 1.29021 + 0.118881i
\(508\) −17.4778 10.0908i −0.0344051 0.0198638i
\(509\) −755.454 436.161i −1.48419 0.856898i −0.484353 0.874873i \(-0.660945\pi\)
−0.999838 + 0.0179741i \(0.994278\pi\)
\(510\) 0 0
\(511\) 305.015 + 528.301i 0.596898 + 1.03386i
\(512\) 22.6274 0.0441942
\(513\) 122.030 + 34.5153i 0.237875 + 0.0672813i
\(514\) −18.1362 −0.0352845
\(515\) 0 0
\(516\) −4.67653 3.30680i −0.00906304 0.00640854i
\(517\) −115.339 66.5908i −0.223092 0.128802i
\(518\) 77.6742 134.536i 0.149950 0.259721i
\(519\) −300.053 27.6470i −0.578136 0.0532697i
\(520\) 0 0
\(521\) 206.132i 0.395646i 0.980238 + 0.197823i \(0.0633872\pi\)
−0.980238 + 0.197823i \(0.936613\pi\)
\(522\) −7.64974 + 41.1589i −0.0146547 + 0.0788485i
\(523\) 884.817i 1.69181i −0.533333 0.845906i \(-0.679061\pi\)
0.533333 0.845906i \(-0.320939\pi\)
\(524\) −8.59133 + 4.96021i −0.0163957 + 0.00946604i
\(525\) 0 0
\(526\) −237.916 + 412.083i −0.452312 + 0.783427i
\(527\) −39.1373 + 67.7878i −0.0742643 + 0.128630i
\(528\) −102.873 + 47.3939i −0.194836 + 0.0897611i
\(529\) 219.955 + 380.973i 0.415793 + 0.720175i
\(530\) 0 0
\(531\) −150.523 + 809.877i −0.283470 + 1.52519i
\(532\) 59.6367i 0.112099i
\(533\) −608.920 1054.68i −1.14244 1.97876i
\(534\) −16.1066 + 174.805i −0.0301622 + 0.327351i
\(535\) 0 0
\(536\) −75.8230 43.7764i −0.141461 0.0816724i
\(537\) 698.278 + 493.757i 1.30033 + 0.919473i
\(538\) −74.0319 + 42.7423i −0.137606 + 0.0794467i
\(539\) 82.0886i 0.152298i
\(540\) 0 0
\(541\) −509.151 −0.941129 −0.470565 0.882365i \(-0.655950\pi\)
−0.470565 + 0.882365i \(0.655950\pi\)
\(542\) −194.197 336.359i −0.358297 0.620588i
\(543\) 64.2962 90.9286i 0.118409 0.167456i
\(544\) 5.39388 9.34247i 0.00991521 0.0171737i
\(545\) 0 0
\(546\) −528.285 48.6764i −0.967555 0.0891509i
\(547\) 474.620 274.022i 0.867679 0.500955i 0.00110267 0.999999i \(-0.499649\pi\)
0.866576 + 0.499045i \(0.166316\pi\)
\(548\) −469.368 −0.856511
\(549\) 439.166 513.675i 0.799939 0.935656i
\(550\) 0 0
\(551\) −13.3791 + 7.72442i −0.0242815 + 0.0140189i
\(552\) −33.5125 72.7423i −0.0607111 0.131780i
\(553\) 163.522 + 94.4092i 0.295699 + 0.170722i
\(554\) 60.0125 + 34.6482i 0.108326 + 0.0625419i
\(555\) 0 0
\(556\) 106.530 + 184.516i 0.191601 + 0.331862i
\(557\) 406.542 0.729879 0.364939 0.931031i \(-0.381090\pi\)
0.364939 + 0.931031i \(0.381090\pi\)
\(558\) 174.141 + 492.545i 0.312080 + 0.882697i
\(559\) −18.8025 −0.0336360
\(560\) 0 0
\(561\) −4.95459 + 53.7722i −0.00883172 + 0.0958507i
\(562\) 420.192 + 242.598i 0.747673 + 0.431669i
\(563\) −303.236 + 525.220i −0.538607 + 0.932895i 0.460372 + 0.887726i \(0.347716\pi\)
−0.998979 + 0.0451687i \(0.985617\pi\)
\(564\) 48.8786 69.1247i 0.0866641 0.122562i
\(565\) 0 0
\(566\) 485.653i 0.858045i
\(567\) −184.764 + 479.886i −0.325863 + 0.846360i
\(568\) 242.969i 0.427763i
\(569\) 224.954 129.877i 0.395350 0.228255i −0.289126 0.957291i \(-0.593365\pi\)
0.684476 + 0.729036i \(0.260031\pi\)
\(570\) 0 0
\(571\) 43.9166 76.0657i 0.0769117 0.133215i −0.825004 0.565126i \(-0.808827\pi\)
0.901916 + 0.431911i \(0.142161\pi\)
\(572\) −185.915 + 322.015i −0.325027 + 0.562963i
\(573\) −4.93369 + 53.5454i −0.00861029 + 0.0934475i
\(574\) 277.553 + 480.736i 0.483541 + 0.837518i
\(575\) 0 0
\(576\) −24.0000 67.8823i −0.0416667 0.117851i
\(577\) 132.091i 0.228927i −0.993427 0.114463i \(-0.963485\pi\)
0.993427 0.114463i \(-0.0365149\pi\)
\(578\) 201.782 + 349.497i 0.349104 + 0.604666i
\(579\) −260.088 + 119.823i −0.449202 + 0.206948i
\(580\) 0 0
\(581\) 483.302 + 279.034i 0.831844 + 0.480266i
\(582\) −369.456 + 170.209i −0.634804 + 0.292455i
\(583\) 77.9423 45.0000i 0.133692 0.0771870i
\(584\) 271.786i 0.465387i
\(585\) 0 0
\(586\) 405.106 0.691306
\(587\) −283.833 491.614i −0.483532 0.837502i 0.516289 0.856414i \(-0.327313\pi\)
−0.999821 + 0.0189125i \(0.993980\pi\)
\(588\) −51.9615 4.78775i −0.0883699 0.00814244i
\(589\) −96.3939 + 166.959i −0.163657 + 0.283462i
\(590\) 0 0
\(591\) −277.757 + 392.808i −0.469978 + 0.664650i
\(592\) 59.9396 34.6061i 0.101249 0.0584563i
\(593\) −77.0321 −0.129902 −0.0649512 0.997888i \(-0.520689\pi\)
−0.0649512 + 0.997888i \(0.520689\pi\)
\(594\) 251.295 + 258.351i 0.423056 + 0.434934i
\(595\) 0 0
\(596\) −182.060 + 105.113i −0.305470 + 0.176363i
\(597\) −11.2848 + 15.9592i −0.0189026 + 0.0267323i
\(598\) −227.699 131.462i −0.380767 0.219836i
\(599\) 764.917 + 441.625i 1.27699 + 0.737270i 0.976294 0.216450i \(-0.0694479\pi\)
0.300696 + 0.953720i \(0.402781\pi\)
\(600\) 0 0
\(601\) 397.545 + 688.569i 0.661473 + 1.14571i 0.980229 + 0.197868i \(0.0634018\pi\)
−0.318755 + 0.947837i \(0.603265\pi\)
\(602\) 8.57042 0.0142366
\(603\) −50.9068 + 273.901i −0.0844226 + 0.454230i
\(604\) −570.454 −0.944460
\(605\) 0 0
\(606\) 608.568 280.368i 1.00424 0.462654i
\(607\) 256.987 + 148.372i 0.423373 + 0.244434i 0.696519 0.717538i \(-0.254731\pi\)
−0.273147 + 0.961972i \(0.588064\pi\)
\(608\) 13.2849 23.0102i 0.0218502 0.0378457i
\(609\) −26.2117 56.8952i −0.0430406 0.0934240i
\(610\) 0 0
\(611\) 277.924i 0.454868i
\(612\) −33.7485 6.27245i −0.0551446 0.0102491i
\(613\) 517.181i 0.843688i 0.906668 + 0.421844i \(0.138617\pi\)
−0.906668 + 0.421844i \(0.861383\pi\)
\(614\) 188.722 108.959i 0.307365 0.177457i
\(615\) 0 0
\(616\) 84.7423 146.778i 0.137569 0.238276i
\(617\) 132.738 229.909i 0.215134 0.372623i −0.738180 0.674604i \(-0.764314\pi\)
0.953314 + 0.301981i \(0.0976478\pi\)
\(618\) −100.931 71.3689i −0.163319 0.115484i
\(619\) −98.5227 170.646i −0.159164 0.275681i 0.775403 0.631466i \(-0.217547\pi\)
−0.934568 + 0.355786i \(0.884213\pi\)
\(620\) 0 0
\(621\) −182.682 + 177.693i −0.294173 + 0.286139i
\(622\) 101.803i 0.163670i
\(623\) −131.339 227.486i −0.210817 0.365146i
\(624\) −192.990 136.464i −0.309279 0.218693i
\(625\) 0 0
\(626\) −450.224 259.937i −0.719207 0.415234i
\(627\) −12.2030 + 132.439i −0.0194625 + 0.211227i
\(628\) −341.529 + 197.182i −0.543835 + 0.313983i
\(629\) 32.9973i 0.0524600i
\(630\) 0 0
\(631\) −160.879 −0.254958 −0.127479 0.991841i \(-0.540689\pi\)
−0.127479 + 0.991841i \(0.540689\pi\)
\(632\) 42.0620 + 72.8536i 0.0665538 + 0.115275i
\(633\) −193.867 420.808i −0.306267 0.664783i
\(634\) −76.0829 + 131.779i −0.120005 + 0.207854i
\(635\) 0 0
\(636\) 23.9388 + 51.9615i 0.0376396 + 0.0817005i
\(637\) −148.353 + 85.6515i −0.232893 + 0.134461i
\(638\) −43.9048 −0.0688164
\(639\) −728.908 + 257.708i −1.14070 + 0.403299i
\(640\) 0 0
\(641\) −267.894 + 154.669i −0.417931 + 0.241293i −0.694192 0.719790i \(-0.744238\pi\)
0.276261 + 0.961083i \(0.410905\pi\)
\(642\) −725.834 66.8786i −1.13058 0.104172i
\(643\) 341.726 + 197.296i 0.531456 + 0.306836i 0.741609 0.670832i \(-0.234063\pi\)
−0.210153 + 0.977668i \(0.567396\pi\)
\(644\) 103.788 + 59.9219i 0.161161 + 0.0930464i
\(645\) 0 0
\(646\) −6.33368 10.9703i −0.00980445 0.0169818i
\(647\) −418.736 −0.647196 −0.323598 0.946195i \(-0.604892\pi\)
−0.323598 + 0.946195i \(0.604892\pi\)
\(648\) −178.191 + 144.000i −0.274986 + 0.222222i
\(649\) −863.908 −1.33114
\(650\) 0 0
\(651\) −638.277 451.330i −0.980456 0.693287i
\(652\) −431.385 249.060i −0.661633 0.381994i
\(653\) −265.363 + 459.621i −0.406375 + 0.703861i −0.994480 0.104923i \(-0.966540\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(654\) 491.221 + 45.2613i 0.751103 + 0.0692069i
\(655\) 0 0
\(656\) 247.316i 0.377006i
\(657\) 815.358 288.272i 1.24103 0.438771i
\(658\) 126.681i 0.192524i
\(659\) −310.204 + 179.096i −0.470719 + 0.271770i −0.716541 0.697545i \(-0.754276\pi\)
0.245822 + 0.969315i \(0.420942\pi\)
\(660\) 0 0
\(661\) 111.136 192.493i 0.168133 0.291214i −0.769631 0.638489i \(-0.779560\pi\)
0.937763 + 0.347275i \(0.112893\pi\)
\(662\) −12.1604 + 21.0625i −0.0183692 + 0.0318165i
\(663\) −102.348 + 47.1520i −0.154371 + 0.0711192i
\(664\) 124.318 + 215.325i 0.187226 + 0.324284i
\(665\) 0 0
\(666\) −167.394 143.113i −0.251342 0.214885i
\(667\) 31.0454i 0.0465448i
\(668\) 48.4365 + 83.8944i 0.0725097 + 0.125590i
\(669\) −25.5362 + 277.145i −0.0381708 + 0.414267i
\(670\) 0 0
\(671\) 613.810 + 354.383i 0.914769 + 0.528142i
\(672\) 87.9670 + 62.2020i 0.130903 + 0.0925626i
\(673\) 250.464 144.606i 0.372161 0.214867i −0.302241 0.953231i \(-0.597735\pi\)
0.674402 + 0.738364i \(0.264401\pi\)
\(674\) 515.331i 0.764586i
\(675\) 0 0
\(676\) −437.939 −0.647838
\(677\) 232.226 + 402.227i 0.343022 + 0.594131i 0.984992 0.172598i \(-0.0552163\pi\)
−0.641971 + 0.766729i \(0.721883\pi\)
\(678\) −495.445 + 700.665i −0.730745 + 1.03343i
\(679\) 304.341 527.134i 0.448220 0.776339i
\(680\) 0 0
\(681\) 507.257 + 46.7389i 0.744871 + 0.0686327i
\(682\) −474.490 + 273.947i −0.695733 + 0.401681i
\(683\) 1126.36 1.64913 0.824565 0.565767i \(-0.191420\pi\)
0.824565 + 0.565767i \(0.191420\pi\)
\(684\) −83.1214 15.4488i −0.121523 0.0225860i
\(685\) 0 0
\(686\) 448.608 259.004i 0.653948 0.377557i
\(687\) −511.589 1110.46i −0.744671 1.61638i
\(688\) 3.30680 + 1.90918i 0.00480640 + 0.00277498i
\(689\) 162.650 + 93.9063i 0.236067 + 0.136294i
\(690\) 0 0
\(691\) −518.841 898.658i −0.750855 1.30052i −0.947409 0.320025i \(-0.896309\pi\)
0.196554 0.980493i \(-0.437025\pi\)
\(692\) 200.883 0.290293
\(693\) −530.217 98.5454i −0.765104 0.142201i
\(694\) 825.044 1.18882
\(695\) 0 0
\(696\) 2.56072 27.7915i 0.00367919 0.0399303i
\(697\) 102.112 + 58.9546i 0.146503 + 0.0845833i
\(698\) 221.153 383.048i 0.316838 0.548779i
\(699\) 26.4245 37.3699i 0.0378033 0.0534619i
\(700\) 0 0
\(701\) 778.180i 1.11010i −0.831817 0.555050i \(-0.812699\pi\)
0.831817 0.555050i \(-0.187301\pi\)
\(702\) −204.697 + 723.712i −0.291591 + 1.03093i
\(703\) 81.2714i 0.115607i
\(704\) 65.3939 37.7552i 0.0928890 0.0536295i
\(705\) 0 0
\(706\) 26.5982 46.0695i 0.0376745 0.0652542i
\(707\) −501.311 + 868.296i −0.709068 + 1.22814i
\(708\) 50.3868 546.848i 0.0711678 0.772384i
\(709\) −586.014 1015.01i −0.826536 1.43160i −0.900739 0.434360i \(-0.856975\pi\)
0.0742031 0.997243i \(-0.476359\pi\)
\(710\) 0 0
\(711\) 173.947 203.459i 0.244651 0.286159i
\(712\) 117.031i 0.164369i
\(713\) −193.710 335.515i −0.271682 0.470568i
\(714\) 46.6515 21.4924i 0.0653383 0.0301015i
\(715\) 0 0
\(716\) −493.757 285.071i −0.689605 0.398144i
\(717\) −154.047 + 70.9699i −0.214850 + 0.0989817i
\(718\) 360.109 207.909i 0.501545 0.289567i
\(719\) 515.416i 0.716851i −0.933558 0.358426i \(-0.883314\pi\)
0.933558 0.358426i \(-0.116686\pi\)
\(720\) 0 0
\(721\) 184.970 0.256547
\(722\) 239.666 + 415.114i 0.331947 + 0.574949i
\(723\) −251.571 23.1799i −0.347954 0.0320607i
\(724\) −37.1214 + 64.2962i −0.0512727 + 0.0888069i
\(725\) 0 0
\(726\) 78.1612 110.537i 0.107660 0.152254i
\(727\) −728.681 + 420.704i −1.00231 + 0.578685i −0.908932 0.416945i \(-0.863101\pi\)
−0.0933809 + 0.995630i \(0.529767\pi\)
\(728\) 353.682 0.485827
\(729\) 621.000 + 381.838i 0.851852 + 0.523783i
\(730\) 0 0
\(731\) 1.57654 0.910215i 0.00215669 0.00124516i
\(732\) −260.122 + 367.868i −0.355358 + 0.502552i
\(733\) 525.125 + 303.181i 0.716405 + 0.413617i 0.813428 0.581665i \(-0.197599\pi\)
−0.0970229 + 0.995282i \(0.530932\pi\)
\(734\) 40.6946 + 23.4951i 0.0554423 + 0.0320096i
\(735\) 0 0
\(736\) 26.6969 + 46.2405i 0.0362730 + 0.0628267i
\(737\) −292.174 −0.396437
\(738\) 741.947 262.318i 1.00535 0.355444i
\(739\) 389.362 0.526877 0.263439 0.964676i \(-0.415143\pi\)
0.263439 + 0.964676i \(0.415143\pi\)
\(740\) 0 0
\(741\) −252.081 + 116.134i −0.340190 + 0.156726i
\(742\) −74.1380 42.8036i −0.0999164 0.0576868i
\(743\) 522.375 904.779i 0.703061 1.21774i −0.264325 0.964434i \(-0.585149\pi\)
0.967387 0.253304i \(-0.0815174\pi\)
\(744\) −145.732 316.326i −0.195877 0.425170i
\(745\) 0 0
\(746\) 318.240i 0.426595i
\(747\) 514.116 601.340i 0.688240 0.805007i
\(748\) 36.0000i 0.0481283i
\(749\) 944.574 545.350i 1.26111 0.728105i
\(750\) 0 0
\(751\) 645.916 1118.76i 0.860074 1.48969i −0.0117826 0.999931i \(-0.503751\pi\)
0.871857 0.489761i \(-0.162916\pi\)
\(752\) −28.2201 + 48.8786i −0.0375267 + 0.0649981i
\(753\) 536.201 + 379.151i 0.712086 + 0.503521i
\(754\) −45.8105 79.3460i −0.0607566 0.105233i
\(755\) 0 0
\(756\) 93.3031 329.876i 0.123417 0.436344i
\(757\) 1042.36i 1.37697i 0.725252 + 0.688483i \(0.241723\pi\)
−0.725252 + 0.688483i \(0.758277\pi\)
\(758\) −117.616 203.716i −0.155166 0.268755i
\(759\) −218.227 154.310i −0.287519 0.203307i
\(760\) 0 0
\(761\) −281.607 162.586i −0.370048 0.213647i 0.303431 0.952853i \(-0.401868\pi\)
−0.673479 + 0.739206i \(0.735201\pi\)
\(762\) 3.92805 42.6311i 0.00515492 0.0559464i
\(763\) −639.258 + 369.076i −0.837822 + 0.483717i
\(764\) 35.8481i 0.0469217i
\(765\) 0 0
\(766\) 1042.26 1.36065
\(767\) −901.405 1561.28i −1.17523 2.03557i
\(768\) 20.0847 + 43.5959i 0.0261520 + 0.0567655i
\(769\) 171.348 296.783i 0.222819 0.385934i −0.732844 0.680397i \(-0.761807\pi\)
0.955663 + 0.294463i \(0.0951407\pi\)
\(770\) 0 0
\(771\) −16.0982 34.9428i −0.0208797 0.0453214i
\(772\) 165.331 95.4541i 0.214160 0.123645i
\(773\) 532.579 0.688977 0.344488 0.938791i \(-0.388052\pi\)
0.344488 + 0.938791i \(0.388052\pi\)
\(774\) 2.22016 11.9454i 0.00286842 0.0154333i
\(775\) 0 0
\(776\) 234.854 135.593i 0.302646 0.174733i
\(777\) 328.154 + 30.2362i 0.422334 + 0.0389140i
\(778\) −207.439 119.765i −0.266631 0.153940i
\(779\) 251.499 + 145.203i 0.322849 + 0.186397i
\(780\) 0 0
\(781\) −405.409 702.188i −0.519089 0.899089i
\(782\) 25.4558 0.0325522
\(783\) −86.0904 + 21.7951i −0.109949 + 0.0278354i
\(784\) 34.7878 0.0443721
\(785\) 0 0
\(786\) −17.1827 12.1500i −0.0218609 0.0154580i
\(787\) 90.0264 + 51.9768i 0.114392 + 0.0660442i 0.556104 0.831113i \(-0.312296\pi\)
−0.441712 + 0.897157i \(0.645629\pi\)
\(788\) 160.363 277.757i 0.203507 0.352484i
\(789\) −1005.13 92.6135i −1.27393 0.117381i
\(790\) 0 0
\(791\) 1284.07i 1.62335i
\(792\) −182.626 156.136i −0.230589 0.197142i
\(793\) 1479.06i 1.86514i
\(794\) −313.868 + 181.212i −0.395300 + 0.228227i
\(795\) 0 0
\(796\) 6.51531 11.2848i 0.00818506 0.0141769i
\(797\) 552.138 956.331i 0.692770 1.19991i −0.278156 0.960536i \(-0.589723\pi\)
0.970927 0.239378i \(-0.0769434\pi\)
\(798\) 114.901 52.9352i 0.143987 0.0663349i
\(799\) 13.4541 + 23.3031i 0.0168386 + 0.0291654i
\(800\) 0 0
\(801\) −351.092 + 124.130i −0.438317 + 0.154968i
\(802\) 369.650i 0.460911i
\(803\) 453.491 + 785.469i 0.564746 + 0.978168i
\(804\) 17.0408 184.944i 0.0211951 0.230030i
\(805\) 0 0
\(806\) −990.168 571.674i −1.22850 0.709273i
\(807\) −148.064 104.697i −0.183474 0.129736i
\(808\) −386.851 + 223.348i −0.478776 + 0.276421i
\(809\) 256.465i 0.317015i −0.987358 0.158508i \(-0.949332\pi\)
0.987358 0.158508i \(-0.0506683\pi\)
\(810\) 0 0
\(811\) 735.362 0.906735 0.453368 0.891324i \(-0.350222\pi\)
0.453368 + 0.891324i \(0.350222\pi\)
\(812\) 20.8809 + 36.1668i 0.0257154 + 0.0445404i
\(813\) 475.683 672.717i 0.585096 0.827451i
\(814\) 115.485 200.025i 0.141873 0.245731i
\(815\) 0 0
\(816\) 22.7878 + 2.09967i 0.0279262 + 0.00257313i
\(817\) 3.88296 2.24183i 0.00475271 0.00274398i
\(818\) 627.611 0.767250
\(819\) −375.136 1061.05i −0.458042 1.29554i
\(820\) 0 0
\(821\) 1078.45 622.645i 1.31358 0.758398i 0.330896 0.943667i \(-0.392649\pi\)
0.982688 + 0.185269i \(0.0593157\pi\)
\(822\) −416.624 904.325i −0.506842 1.10015i
\(823\) −1335.63 771.129i −1.62288 0.936973i −0.986143 0.165896i \(-0.946948\pi\)
−0.636742 0.771077i \(-0.719718\pi\)
\(824\) 71.3689 + 41.2048i 0.0866127 + 0.0500059i
\(825\) 0 0
\(826\) 410.871 + 711.649i 0.497422 + 0.861560i
\(827\) 955.707 1.15563 0.577815 0.816167i \(-0.303905\pi\)
0.577815 + 0.816167i \(0.303905\pi\)
\(828\) 110.405 129.136i 0.133339 0.155962i
\(829\) −1082.88 −1.30625 −0.653123 0.757252i \(-0.726542\pi\)
−0.653123 + 0.757252i \(0.726542\pi\)
\(830\) 0 0
\(831\) −13.4875 + 146.380i −0.0162304 + 0.176149i
\(832\) 136.464 + 78.7878i 0.164020 + 0.0946968i
\(833\) 8.29263 14.3633i 0.00995514 0.0172428i
\(834\) −260.944 + 369.031i −0.312883 + 0.442483i
\(835\) 0 0
\(836\) 88.6669i 0.106061i
\(837\) −794.407 + 772.711i −0.949112 + 0.923191i
\(838\) 15.2281i 0.0181719i
\(839\) −903.778 + 521.797i −1.07721 + 0.621927i −0.930142 0.367200i \(-0.880317\pi\)
−0.147067 + 0.989127i \(0.546983\pi\)
\(840\) 0 0
\(841\) −415.091 + 718.958i −0.493568 + 0.854885i
\(842\) −179.819 + 311.456i −0.213562 + 0.369901i
\(843\) −94.4361 + 1024.92i −0.112024 + 1.21580i
\(844\) 154.439 + 267.497i 0.182985 + 0.316939i
\(845\) 0 0
\(846\) 176.568 + 32.8166i 0.208709 + 0.0387903i
\(847\) 202.574i 0.239167i
\(848\) −19.0702 33.0306i −0.0224885 0.0389512i
\(849\) −935.701 + 431.079i −1.10212 + 0.507749i
\(850\) 0 0
\(851\) 141.439 + 81.6600i 0.166204 + 0.0959577i
\(852\) 468.126 215.666i 0.549443 0.253129i
\(853\) −410.338 + 236.909i −0.481053 + 0.277736i −0.720855 0.693086i \(-0.756251\pi\)
0.239802 + 0.970822i \(0.422917\pi\)
\(854\) 674.172i 0.789429i
\(855\) 0 0
\(856\) 485.939 0.567685
\(857\) 458.381 + 793.939i 0.534867 + 0.926417i 0.999170 + 0.0407403i \(0.0129716\pi\)
−0.464303 + 0.885677i \(0.653695\pi\)
\(858\) −785.445 72.3712i −0.915437 0.0843487i
\(859\) 478.901 829.480i 0.557510 0.965635i −0.440194 0.897903i \(-0.645090\pi\)
0.997704 0.0677322i \(-0.0215764\pi\)
\(860\) 0 0
\(861\) −679.863 + 961.471i −0.789620 + 1.11669i
\(862\) 855.684 494.030i 0.992673 0.573120i
\(863\) 524.200 0.607416 0.303708 0.952765i \(-0.401775\pi\)
0.303708 + 0.952765i \(0.401775\pi\)
\(864\) 109.485 106.495i 0.126718 0.123258i
\(865\) 0 0
\(866\) −259.312 + 149.714i −0.299437 + 0.172880i
\(867\) −494.264 + 698.994i −0.570085 + 0.806222i
\(868\) 451.330 + 260.576i 0.519965 + 0.300202i
\(869\) 243.121 + 140.366i 0.279771 + 0.161526i
\(870\) 0 0
\(871\) −304.855 528.025i −0.350006 0.606228i
\(872\) −328.868 −0.377142
\(873\) −655.878 560.743i −0.751292 0.642317i
\(874\) 62.6969 0.0717356
\(875\) 0 0
\(876\) −523.646 + 241.245i −0.597769 + 0.275393i
\(877\) −872.742 503.878i −0.995145 0.574547i −0.0883370 0.996091i \(-0.528155\pi\)
−0.906808 + 0.421543i \(0.861489\pi\)
\(878\) 197.893 342.760i 0.225390 0.390388i
\(879\) 359.583 + 780.511i 0.409082 + 0.887954i
\(880\) 0 0
\(881\) 1536.71i 1.74428i −0.489254 0.872141i \(-0.662731\pi\)
0.489254 0.872141i \(-0.337269\pi\)
\(882\) −36.8980 104.363i −0.0418345 0.118326i
\(883\) 294.213i 0.333197i 0.986025 + 0.166599i \(0.0532784\pi\)
−0.986025 + 0.166599i \(0.946722\pi\)
\(884\) 65.0602 37.5625i 0.0735975 0.0424915i
\(885\) 0 0
\(886\) 389.796 675.146i 0.439950 0.762016i
\(887\) 287.402 497.794i 0.324015 0.561211i −0.657297 0.753631i \(-0.728300\pi\)
0.981313 + 0.192420i \(0.0616337\pi\)
\(888\) 119.879 + 84.7673i 0.134999 + 0.0954587i
\(889\) 32.0306 + 55.4787i 0.0360299 + 0.0624057i
\(890\) 0 0
\(891\) −274.704 + 713.486i −0.308310 + 0.800770i
\(892\) 185.546i 0.208011i
\(893\) 33.1370 + 57.3949i 0.0371075 + 0.0642720i
\(894\) −364.120 257.472i −0.407294 0.288000i
\(895\) 0 0
\(896\) −62.2020 35.9124i −0.0694219 0.0400808i
\(897\) 51.1741 555.393i 0.0570503 0.619168i
\(898\) −664.872 + 383.864i −0.740391 + 0.427465i
\(899\) 135.004i 0.150171i
\(900\) 0 0
\(901\) −18.1837 −0.0201817
\(902\) 412.661 + 714.749i 0.457495 + 0.792405i
\(903\) 7.60734 + 16.5125i 0.00842452 + 0.0182863i
\(904\) 286.045 495.445i 0.316422 0.548059i
\(905\) 0 0
\(906\) −506.351 1099.09i −0.558886 1.21312i
\(907\) −441.737 + 255.037i −0.487031 + 0.281187i −0.723342 0.690490i \(-0.757395\pi\)
0.236311 + 0.971677i \(0.424062\pi\)
\(908\) −339.604 −0.374013
\(909\) 1080.36 + 923.656i 1.18852 + 1.01612i
\(910\) 0 0
\(911\) −803.127 + 463.685i −0.881588 + 0.508985i −0.871182 0.490961i \(-0.836646\pi\)
−0.0104064 + 0.999946i \(0.503313\pi\)
\(912\) 56.1255 + 5.17143i 0.0615411 + 0.00567042i
\(913\) 718.564 + 414.863i 0.787036 + 0.454396i
\(914\) −113.123 65.3114i −0.123767 0.0714567i
\(915\) 0 0
\(916\) 407.545 + 705.888i 0.444918 + 0.770621i
\(917\) 31.4897 0.0343399
\(918\) −17.8710 70.5903i −0.0194674 0.0768958i
\(919\) 1240.63 1.34998 0.674991 0.737826i \(-0.264147\pi\)
0.674991 + 0.737826i \(0.264147\pi\)
\(920\) 0 0
\(921\) 377.444 + 266.893i 0.409820 + 0.289786i
\(922\) 281.471 + 162.507i 0.305283 + 0.176255i
\(923\) 846.010 1465.33i 0.916587 1.58757i
\(924\) 358.015 + 32.9876i 0.387462 + 0.0357009i
\(925\) 0 0
\(926\) 722.384i 0.780112i
\(927\) 47.9164 257.811i 0.0516897 0.278113i
\(928\) 18.6061i 0.0200497i
\(929\) −293.576 + 169.496i −0.316013 + 0.182450i −0.649614 0.760264i \(-0.725069\pi\)
0.333601 + 0.942714i \(0.391736\pi\)
\(930\) 0 0
\(931\) 20.4245 35.3763i 0.0219382 0.0379981i
\(932\) −15.2562 + 26.4245i −0.0163693 + 0.0283525i
\(933\) −196.141 + 90.3627i −0.210227 + 0.0968518i
\(934\) −589.485 1021.02i −0.631140 1.09317i
\(935\) 0 0
\(936\) 91.6209 492.960i 0.0978856 0.526667i
\(937\) 1322.21i 1.41111i 0.708655 + 0.705556i \(0.249302\pi\)
−0.708655 + 0.705556i \(0.750698\pi\)
\(938\) 138.957 + 240.680i 0.148141 + 0.256588i
\(939\) 101.185 1098.17i 0.107759 1.16951i
\(940\) 0 0
\(941\) −310.984 179.547i −0.330482 0.190804i 0.325573 0.945517i \(-0.394443\pi\)
−0.656055 + 0.754713i \(0.727776\pi\)
\(942\) −683.057 482.994i −0.725114 0.512733i
\(943\) −505.404 + 291.795i −0.535953 + 0.309433i
\(944\) 366.110i 0.387828i
\(945\) 0 0
\(946\) 12.7423 0.0134697
\(947\) −387.896 671.855i −0.409605 0.709457i 0.585240 0.810860i \(-0.301000\pi\)
−0.994845 + 0.101403i \(0.967667\pi\)
\(948\) −103.031 + 145.707i −0.108682 + 0.153700i
\(949\) −946.347 + 1639.12i −0.997205 + 1.72721i
\(950\) 0 0
\(951\) −321.431 29.6168i −0.337992 0.0311428i
\(952\) −29.6552 + 17.1214i −0.0311504 + 0.0179847i
\(953\) 465.082 0.488019 0.244010 0.969773i \(-0.421537\pi\)
0.244010 + 0.969773i \(0.421537\pi\)
\(954\) −78.8648 + 92.2450i −0.0826675 + 0.0966928i
\(955\) 0 0
\(956\) 97.9240 56.5364i 0.102431 0.0591385i
\(957\) −38.9711 84.5908i −0.0407222 0.0883917i
\(958\) 804.891 + 464.704i 0.840178 + 0.485077i
\(959\) 1290.28 + 744.942i 1.34544 + 0.776791i
\(960\) 0 0
\(961\) −361.863 626.765i −0.376548 0.652200i
\(962\) 481.989 0.501028
\(963\) −515.416 1457.82i −0.535219 1.51383i
\(964\) 168.424 0.174714
\(965\) 0 0
\(966\) −23.3258 + 253.155i −0.0241468 + 0.262065i
\(967\) −1060.21 612.113i −1.09639 0.633002i −0.161121 0.986935i \(-0.551511\pi\)
−0.935271 + 0.353933i \(0.884844\pi\)
\(968\) −45.1264 + 78.1612i −0.0466182 + 0.0807451i
\(969\) 15.5143 21.9405i 0.0160106 0.0226424i
\(970\) 0 0
\(971\) 658.702i 0.678375i 0.940719 + 0.339188i \(0.110152\pi\)
−0.940719 + 0.339188i \(0.889848\pi\)
\(972\) −435.610 215.499i −0.448158 0.221707i
\(973\) 676.303i 0.695070i
\(974\) −430.702 + 248.666i −0.442199 + 0.255304i
\(975\) 0 0
\(976\) 150.182 260.122i 0.153875 0.266519i
\(977\) −759.170 + 1314.92i −0.777042 + 1.34588i 0.156597 + 0.987663i \(0.449948\pi\)
−0.933639 + 0.358214i \(0.883386\pi\)
\(978\) 96.9515 1052.22i 0.0991325 1.07589i
\(979\) −195.272 338.222i −0.199461 0.345477i
\(980\) 0 0
\(981\) 348.817 + 986.604i 0.355573 + 1.00571i
\(982\) 347.074i 0.353436i
\(983\) −413.920 716.930i −0.421078 0.729329i 0.574967 0.818177i \(-0.305015\pi\)
−0.996045 + 0.0888477i \(0.971682\pi\)
\(984\) −476.499 + 219.524i −0.484247 + 0.223094i
\(985\) 0 0
\(986\) 7.68215 + 4.43529i 0.00779122 + 0.00449826i
\(987\) −244.075 + 112.446i −0.247289 + 0.113927i
\(988\) 160.241 92.5153i 0.162187 0.0936390i
\(989\) 9.01020i 0.00911041i
\(990\) 0 0
\(991\) 429.546 0.433447 0.216723 0.976233i \(-0.430463\pi\)
0.216723 + 0.976233i \(0.430463\pi\)
\(992\) 116.094 + 201.081i 0.117030 + 0.202702i
\(993\) −51.3747 4.73369i −0.0517369 0.00476706i
\(994\) −385.621 + 667.915i −0.387949 + 0.671947i
\(995\) 0 0
\(996\) −304.515 + 430.650i −0.305738 + 0.432379i
\(997\) −601.886 + 347.499i −0.603697 + 0.348545i −0.770495 0.637447i \(-0.779991\pi\)
0.166798 + 0.985991i \(0.446657\pi\)
\(998\) −891.274 −0.893060
\(999\) 127.151 449.547i 0.127278 0.449997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.3.k.a.149.2 8
3.2 odd 2 1350.3.k.a.449.3 8
5.2 odd 4 450.3.i.b.401.2 4
5.3 odd 4 18.3.d.a.5.1 4
5.4 even 2 inner 450.3.k.a.149.3 8
9.2 odd 6 inner 450.3.k.a.299.3 8
9.7 even 3 1350.3.k.a.899.2 8
15.2 even 4 1350.3.i.b.1151.1 4
15.8 even 4 54.3.d.a.17.2 4
15.14 odd 2 1350.3.k.a.449.2 8
20.3 even 4 144.3.q.c.113.1 4
40.3 even 4 576.3.q.e.257.2 4
40.13 odd 4 576.3.q.f.257.1 4
45.2 even 12 450.3.i.b.101.2 4
45.7 odd 12 1350.3.i.b.251.1 4
45.13 odd 12 162.3.b.a.161.2 4
45.23 even 12 162.3.b.a.161.3 4
45.29 odd 6 inner 450.3.k.a.299.2 8
45.34 even 6 1350.3.k.a.899.3 8
45.38 even 12 18.3.d.a.11.1 yes 4
45.43 odd 12 54.3.d.a.35.2 4
60.23 odd 4 432.3.q.d.17.2 4
120.53 even 4 1728.3.q.d.449.1 4
120.83 odd 4 1728.3.q.c.449.2 4
180.23 odd 12 1296.3.e.g.161.1 4
180.43 even 12 432.3.q.d.305.2 4
180.83 odd 12 144.3.q.c.65.1 4
180.103 even 12 1296.3.e.g.161.3 4
360.43 even 12 1728.3.q.c.1601.2 4
360.83 odd 12 576.3.q.e.65.2 4
360.133 odd 12 1728.3.q.d.1601.1 4
360.173 even 12 576.3.q.f.65.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.3.d.a.5.1 4 5.3 odd 4
18.3.d.a.11.1 yes 4 45.38 even 12
54.3.d.a.17.2 4 15.8 even 4
54.3.d.a.35.2 4 45.43 odd 12
144.3.q.c.65.1 4 180.83 odd 12
144.3.q.c.113.1 4 20.3 even 4
162.3.b.a.161.2 4 45.13 odd 12
162.3.b.a.161.3 4 45.23 even 12
432.3.q.d.17.2 4 60.23 odd 4
432.3.q.d.305.2 4 180.43 even 12
450.3.i.b.101.2 4 45.2 even 12
450.3.i.b.401.2 4 5.2 odd 4
450.3.k.a.149.2 8 1.1 even 1 trivial
450.3.k.a.149.3 8 5.4 even 2 inner
450.3.k.a.299.2 8 45.29 odd 6 inner
450.3.k.a.299.3 8 9.2 odd 6 inner
576.3.q.e.65.2 4 360.83 odd 12
576.3.q.e.257.2 4 40.3 even 4
576.3.q.f.65.1 4 360.173 even 12
576.3.q.f.257.1 4 40.13 odd 4
1296.3.e.g.161.1 4 180.23 odd 12
1296.3.e.g.161.3 4 180.103 even 12
1350.3.i.b.251.1 4 45.7 odd 12
1350.3.i.b.1151.1 4 15.2 even 4
1350.3.k.a.449.2 8 15.14 odd 2
1350.3.k.a.449.3 8 3.2 odd 2
1350.3.k.a.899.2 8 9.7 even 3
1350.3.k.a.899.3 8 45.34 even 6
1728.3.q.c.449.2 4 120.83 odd 4
1728.3.q.c.1601.2 4 360.43 even 12
1728.3.q.d.449.1 4 120.53 even 4
1728.3.q.d.1601.1 4 360.133 odd 12