L(s) = 1 | − 2.23·2-s + 3.00·4-s + (1 + 2i)5-s + 2i·7-s − 2.23·8-s + (−2.23 − 4.47i)10-s − 4.47i·11-s − 4i·13-s − 4.47i·14-s − 0.999·16-s − 4.47·17-s + 4.47i·19-s + (3.00 + 6.00i)20-s + 10.0i·22-s + 6i·23-s + ⋯ |
L(s) = 1 | − 1.58·2-s + 1.50·4-s + (0.447 + 0.894i)5-s + 0.755i·7-s − 0.790·8-s + (−0.707 − 1.41i)10-s − 1.34i·11-s − 1.10i·13-s − 1.19i·14-s − 0.249·16-s − 1.08·17-s + 1.02i·19-s + (0.670 + 1.34i)20-s + 2.13i·22-s + 1.25i·23-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)(−0.991−0.126i)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)(−0.991−0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
1305
= 32⋅5⋅29
|
Sign: |
−0.991−0.126i
|
Analytic conductor: |
10.4204 |
Root analytic conductor: |
3.22807 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1305(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1305, ( :1/2), −0.991−0.126i)
|
Particular Values
L(1) |
≈ |
0.2352769856 |
L(21) |
≈ |
0.2352769856 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−1−2i)T |
| 29 | 1+(3−4.47i)T |
good | 2 | 1+2.23T+2T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+4.47iT−11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1+4.47T+17T2 |
| 19 | 1−4.47iT−19T2 |
| 23 | 1−6iT−23T2 |
| 31 | 1+4.47iT−31T2 |
| 37 | 1+4.47T+37T2 |
| 41 | 1−41T2 |
| 43 | 1+43T2 |
| 47 | 1+8.94T+47T2 |
| 53 | 1+4iT−53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1−8.94iT−61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+13.4T+73T2 |
| 79 | 1−13.4iT−79T2 |
| 83 | 1+6iT−83T2 |
| 89 | 1−17.8iT−89T2 |
| 97 | 1−4.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.935738535811924421416301655404, −9.210825985635991103754745299279, −8.499357806274984232468047488467, −7.84748978019647332716369706895, −6.98626991785551425940130702943, −6.04387031888616029287739630217, −5.47331098420434753368379248904, −3.54740027338595141059816997852, −2.63801502454215859539058414259, −1.54946195645694292037376711820,
0.16288221280421833640861376902, 1.56097472786110788727540770295, 2.29797299929811916202021264823, 4.37214958392142835310739236006, 4.74544196587878280584759612203, 6.46890242925906042264335539151, 6.95726196215900363794146718354, 7.76450723859041965701026358941, 8.819287887331014677195795881103, 9.096349953110822791115792883863