Properties

Label 1305.2.f.h.289.2
Level $1305$
Weight $2$
Character 1305.289
Analytic conductor $10.420$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(289,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.2
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1305.289
Dual form 1305.2.f.h.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{2} +3.00000 q^{4} +(1.00000 + 2.00000i) q^{5} +2.00000i q^{7} -2.23607 q^{8} +(-2.23607 - 4.47214i) q^{10} -4.47214i q^{11} -4.00000i q^{13} -4.47214i q^{14} -1.00000 q^{16} -4.47214 q^{17} +4.47214i q^{19} +(3.00000 + 6.00000i) q^{20} +10.0000i q^{22} +6.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} +8.94427i q^{26} +6.00000i q^{28} +(-3.00000 + 4.47214i) q^{29} -4.47214i q^{31} +6.70820 q^{32} +10.0000 q^{34} +(-4.00000 + 2.00000i) q^{35} -4.47214 q^{37} -10.0000i q^{38} +(-2.23607 - 4.47214i) q^{40} -13.4164i q^{44} -13.4164i q^{46} -8.94427 q^{47} +3.00000 q^{49} +(6.70820 - 8.94427i) q^{50} -12.0000i q^{52} -4.00000i q^{53} +(8.94427 - 4.47214i) q^{55} -4.47214i q^{56} +(6.70820 - 10.0000i) q^{58} -4.00000 q^{59} +8.94427i q^{61} +10.0000i q^{62} -13.0000 q^{64} +(8.00000 - 4.00000i) q^{65} -2.00000i q^{67} -13.4164 q^{68} +(8.94427 - 4.47214i) q^{70} -13.4164 q^{73} +10.0000 q^{74} +13.4164i q^{76} +8.94427 q^{77} +13.4164i q^{79} +(-1.00000 - 2.00000i) q^{80} -6.00000i q^{83} +(-4.47214 - 8.94427i) q^{85} +10.0000i q^{88} +17.8885i q^{89} +8.00000 q^{91} +18.0000i q^{92} +20.0000 q^{94} +(-8.94427 + 4.47214i) q^{95} +4.47214 q^{97} -6.70820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{4} + 4 q^{5} - 4 q^{16} + 12 q^{20} - 12 q^{25} - 12 q^{29} + 40 q^{34} - 16 q^{35} + 12 q^{49} - 16 q^{59} - 52 q^{64} + 32 q^{65} + 40 q^{74} - 4 q^{80} + 32 q^{91} + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23607 −1.58114 −0.790569 0.612372i \(-0.790215\pi\)
−0.790569 + 0.612372i \(0.790215\pi\)
\(3\) 0 0
\(4\) 3.00000 1.50000
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) −2.23607 4.47214i −0.707107 1.41421i
\(11\) 4.47214i 1.34840i −0.738549 0.674200i \(-0.764489\pi\)
0.738549 0.674200i \(-0.235511\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 4.47214i 1.19523i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) 4.47214i 1.02598i 0.858395 + 0.512989i \(0.171462\pi\)
−0.858395 + 0.512989i \(0.828538\pi\)
\(20\) 3.00000 + 6.00000i 0.670820 + 1.34164i
\(21\) 0 0
\(22\) 10.0000i 2.13201i
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 8.94427i 1.75412i
\(27\) 0 0
\(28\) 6.00000i 1.13389i
\(29\) −3.00000 + 4.47214i −0.557086 + 0.830455i
\(30\) 0 0
\(31\) 4.47214i 0.803219i −0.915811 0.401610i \(-0.868451\pi\)
0.915811 0.401610i \(-0.131549\pi\)
\(32\) 6.70820 1.18585
\(33\) 0 0
\(34\) 10.0000 1.71499
\(35\) −4.00000 + 2.00000i −0.676123 + 0.338062i
\(36\) 0 0
\(37\) −4.47214 −0.735215 −0.367607 0.929981i \(-0.619823\pi\)
−0.367607 + 0.929981i \(0.619823\pi\)
\(38\) 10.0000i 1.62221i
\(39\) 0 0
\(40\) −2.23607 4.47214i −0.353553 0.707107i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 13.4164i 2.02260i
\(45\) 0 0
\(46\) 13.4164i 1.97814i
\(47\) −8.94427 −1.30466 −0.652328 0.757937i \(-0.726208\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 6.70820 8.94427i 0.948683 1.26491i
\(51\) 0 0
\(52\) 12.0000i 1.66410i
\(53\) 4.00000i 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 8.94427 4.47214i 1.20605 0.603023i
\(56\) 4.47214i 0.597614i
\(57\) 0 0
\(58\) 6.70820 10.0000i 0.880830 1.31306i
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 8.94427i 1.14520i 0.819836 + 0.572598i \(0.194065\pi\)
−0.819836 + 0.572598i \(0.805935\pi\)
\(62\) 10.0000i 1.27000i
\(63\) 0 0
\(64\) −13.0000 −1.62500
\(65\) 8.00000 4.00000i 0.992278 0.496139i
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) −13.4164 −1.62698
\(69\) 0 0
\(70\) 8.94427 4.47214i 1.06904 0.534522i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −13.4164 −1.57027 −0.785136 0.619324i \(-0.787407\pi\)
−0.785136 + 0.619324i \(0.787407\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) 13.4164i 1.53897i
\(77\) 8.94427 1.01929
\(78\) 0 0
\(79\) 13.4164i 1.50946i 0.656033 + 0.754732i \(0.272233\pi\)
−0.656033 + 0.754732i \(0.727767\pi\)
\(80\) −1.00000 2.00000i −0.111803 0.223607i
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 0 0
\(85\) −4.47214 8.94427i −0.485071 0.970143i
\(86\) 0 0
\(87\) 0 0
\(88\) 10.0000i 1.06600i
\(89\) 17.8885i 1.89618i 0.317999 + 0.948091i \(0.396989\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 18.0000i 1.87663i
\(93\) 0 0
\(94\) 20.0000 2.06284
\(95\) −8.94427 + 4.47214i −0.917663 + 0.458831i
\(96\) 0 0
\(97\) 4.47214 0.454077 0.227038 0.973886i \(-0.427096\pi\)
0.227038 + 0.973886i \(0.427096\pi\)
\(98\) −6.70820 −0.677631
\(99\) 0 0
\(100\) −9.00000 + 12.0000i −0.900000 + 1.20000i
\(101\) 8.94427i 0.889988i −0.895533 0.444994i \(-0.853206\pi\)
0.895533 0.444994i \(-0.146794\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) 8.94427i 0.877058i
\(105\) 0 0
\(106\) 8.94427i 0.868744i
\(107\) 2.00000i 0.193347i 0.995316 + 0.0966736i \(0.0308203\pi\)
−0.995316 + 0.0966736i \(0.969180\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −20.0000 + 10.0000i −1.90693 + 0.953463i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) −4.47214 −0.420703 −0.210352 0.977626i \(-0.567461\pi\)
−0.210352 + 0.977626i \(0.567461\pi\)
\(114\) 0 0
\(115\) −12.0000 + 6.00000i −1.11901 + 0.559503i
\(116\) −9.00000 + 13.4164i −0.835629 + 1.24568i
\(117\) 0 0
\(118\) 8.94427 0.823387
\(119\) 8.94427i 0.819920i
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 20.0000i 1.81071i
\(123\) 0 0
\(124\) 13.4164i 1.20483i
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) −8.94427 −0.793676 −0.396838 0.917889i \(-0.629892\pi\)
−0.396838 + 0.917889i \(0.629892\pi\)
\(128\) 15.6525 1.38350
\(129\) 0 0
\(130\) −17.8885 + 8.94427i −1.56893 + 0.784465i
\(131\) 4.47214i 0.390732i −0.980730 0.195366i \(-0.937410\pi\)
0.980730 0.195366i \(-0.0625895\pi\)
\(132\) 0 0
\(133\) −8.94427 −0.775567
\(134\) 4.47214i 0.386334i
\(135\) 0 0
\(136\) 10.0000 0.857493
\(137\) 13.4164 1.14624 0.573121 0.819471i \(-0.305733\pi\)
0.573121 + 0.819471i \(0.305733\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) −12.0000 + 6.00000i −1.01419 + 0.507093i
\(141\) 0 0
\(142\) 0 0
\(143\) −17.8885 −1.49592
\(144\) 0 0
\(145\) −11.9443 1.52786i −0.991918 0.126882i
\(146\) 30.0000 2.48282
\(147\) 0 0
\(148\) −13.4164 −1.10282
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 10.0000i 0.811107i
\(153\) 0 0
\(154\) −20.0000 −1.61165
\(155\) 8.94427 4.47214i 0.718421 0.359211i
\(156\) 0 0
\(157\) 13.4164 1.07075 0.535373 0.844616i \(-0.320171\pi\)
0.535373 + 0.844616i \(0.320171\pi\)
\(158\) 30.0000i 2.38667i
\(159\) 0 0
\(160\) 6.70820 + 13.4164i 0.530330 + 1.06066i
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) −17.8885 −1.40114 −0.700569 0.713584i \(-0.747071\pi\)
−0.700569 + 0.713584i \(0.747071\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 13.4164i 1.04132i
\(167\) 22.0000i 1.70241i 0.524832 + 0.851206i \(0.324128\pi\)
−0.524832 + 0.851206i \(0.675872\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 10.0000 + 20.0000i 0.766965 + 1.53393i
\(171\) 0 0
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) −8.00000 6.00000i −0.604743 0.453557i
\(176\) 4.47214i 0.337100i
\(177\) 0 0
\(178\) 40.0000i 2.99813i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −17.8885 −1.32599
\(183\) 0 0
\(184\) 13.4164i 0.989071i
\(185\) −4.47214 8.94427i −0.328798 0.657596i
\(186\) 0 0
\(187\) 20.0000i 1.46254i
\(188\) −26.8328 −1.95698
\(189\) 0 0
\(190\) 20.0000 10.0000i 1.45095 0.725476i
\(191\) 13.4164i 0.970777i −0.874299 0.485389i \(-0.838678\pi\)
0.874299 0.485389i \(-0.161322\pi\)
\(192\) 0 0
\(193\) 4.47214 0.321911 0.160956 0.986962i \(-0.448542\pi\)
0.160956 + 0.986962i \(0.448542\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 6.70820 8.94427i 0.474342 0.632456i
\(201\) 0 0
\(202\) 20.0000i 1.40720i
\(203\) −8.94427 6.00000i −0.627765 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 13.4164i 0.934765i
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) 22.3607i 1.53937i 0.638422 + 0.769686i \(0.279587\pi\)
−0.638422 + 0.769686i \(0.720413\pi\)
\(212\) 12.0000i 0.824163i
\(213\) 0 0
\(214\) 4.47214i 0.305709i
\(215\) 0 0
\(216\) 0 0
\(217\) 8.94427 0.607177
\(218\) 22.3607 1.51446
\(219\) 0 0
\(220\) 26.8328 13.4164i 1.80907 0.904534i
\(221\) 17.8885i 1.20331i
\(222\) 0 0
\(223\) 14.0000i 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 13.4164i 0.896421i
\(225\) 0 0
\(226\) 10.0000 0.665190
\(227\) 18.0000i 1.19470i 0.801980 + 0.597351i \(0.203780\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(228\) 0 0
\(229\) 26.8328i 1.77316i −0.462573 0.886581i \(-0.653074\pi\)
0.462573 0.886581i \(-0.346926\pi\)
\(230\) 26.8328 13.4164i 1.76930 0.884652i
\(231\) 0 0
\(232\) 6.70820 10.0000i 0.440415 0.656532i
\(233\) 24.0000i 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) 0 0
\(235\) −8.94427 17.8885i −0.583460 1.16692i
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 20.0000i 1.29641i
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 20.1246 1.29366
\(243\) 0 0
\(244\) 26.8328i 1.71780i
\(245\) 3.00000 + 6.00000i 0.191663 + 0.383326i
\(246\) 0 0
\(247\) 17.8885 1.13822
\(248\) 10.0000i 0.635001i
\(249\) 0 0
\(250\) 24.5967 + 4.47214i 1.55563 + 0.282843i
\(251\) 4.47214i 0.282279i −0.989990 0.141139i \(-0.954923\pi\)
0.989990 0.141139i \(-0.0450766\pi\)
\(252\) 0 0
\(253\) 26.8328 1.68696
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) −9.00000 −0.562500
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 0 0
\(259\) 8.94427i 0.555770i
\(260\) 24.0000 12.0000i 1.48842 0.744208i
\(261\) 0 0
\(262\) 10.0000i 0.617802i
\(263\) −26.8328 −1.65458 −0.827291 0.561773i \(-0.810119\pi\)
−0.827291 + 0.561773i \(0.810119\pi\)
\(264\) 0 0
\(265\) 8.00000 4.00000i 0.491436 0.245718i
\(266\) 20.0000 1.22628
\(267\) 0 0
\(268\) 6.00000i 0.366508i
\(269\) 8.94427i 0.545342i −0.962107 0.272671i \(-0.912093\pi\)
0.962107 0.272671i \(-0.0879070\pi\)
\(270\) 0 0
\(271\) 13.4164i 0.814989i 0.913208 + 0.407494i \(0.133597\pi\)
−0.913208 + 0.407494i \(0.866403\pi\)
\(272\) 4.47214 0.271163
\(273\) 0 0
\(274\) −30.0000 −1.81237
\(275\) 17.8885 + 13.4164i 1.07872 + 0.809040i
\(276\) 0 0
\(277\) 28.0000i 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) 44.7214 2.68221
\(279\) 0 0
\(280\) 8.94427 4.47214i 0.534522 0.267261i
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 6.00000i 0.356663i 0.983970 + 0.178331i \(0.0570699\pi\)
−0.983970 + 0.178331i \(0.942930\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 40.0000 2.36525
\(287\) 0 0
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 26.7082 + 3.41641i 1.56836 + 0.200618i
\(291\) 0 0
\(292\) −40.2492 −2.35541
\(293\) 4.47214 0.261265 0.130632 0.991431i \(-0.458299\pi\)
0.130632 + 0.991431i \(0.458299\pi\)
\(294\) 0 0
\(295\) −4.00000 8.00000i −0.232889 0.465778i
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) −22.3607 −1.29532
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 4.47214i 0.256495i
\(305\) −17.8885 + 8.94427i −1.02430 + 0.512148i
\(306\) 0 0
\(307\) −17.8885 −1.02095 −0.510477 0.859892i \(-0.670531\pi\)
−0.510477 + 0.859892i \(0.670531\pi\)
\(308\) 26.8328 1.52894
\(309\) 0 0
\(310\) −20.0000 + 10.0000i −1.13592 + 0.567962i
\(311\) 22.3607i 1.26796i 0.773350 + 0.633979i \(0.218579\pi\)
−0.773350 + 0.633979i \(0.781421\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i 0.891923 + 0.452187i \(0.149356\pi\)
−0.891923 + 0.452187i \(0.850644\pi\)
\(314\) −30.0000 −1.69300
\(315\) 0 0
\(316\) 40.2492i 2.26420i
\(317\) 22.3607 1.25590 0.627950 0.778253i \(-0.283894\pi\)
0.627950 + 0.778253i \(0.283894\pi\)
\(318\) 0 0
\(319\) 20.0000 + 13.4164i 1.11979 + 0.751175i
\(320\) −13.0000 26.0000i −0.726722 1.45344i
\(321\) 0 0
\(322\) 26.8328 1.49533
\(323\) 20.0000i 1.11283i
\(324\) 0 0
\(325\) 16.0000 + 12.0000i 0.887520 + 0.665640i
\(326\) 40.0000 2.21540
\(327\) 0 0
\(328\) 0 0
\(329\) 17.8885i 0.986227i
\(330\) 0 0
\(331\) 13.4164i 0.737432i −0.929542 0.368716i \(-0.879797\pi\)
0.929542 0.368716i \(-0.120203\pi\)
\(332\) 18.0000i 0.987878i
\(333\) 0 0
\(334\) 49.1935i 2.69175i
\(335\) 4.00000 2.00000i 0.218543 0.109272i
\(336\) 0 0
\(337\) 4.47214 0.243613 0.121806 0.992554i \(-0.461131\pi\)
0.121806 + 0.992554i \(0.461131\pi\)
\(338\) 6.70820 0.364878
\(339\) 0 0
\(340\) −13.4164 26.8328i −0.727607 1.45521i
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 8.94427i 0.480847i
\(347\) 2.00000i 0.107366i 0.998558 + 0.0536828i \(0.0170960\pi\)
−0.998558 + 0.0536828i \(0.982904\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 17.8885 + 13.4164i 0.956183 + 0.717137i
\(351\) 0 0
\(352\) 30.0000i 1.59901i
\(353\) 24.0000i 1.27739i 0.769460 + 0.638696i \(0.220526\pi\)
−0.769460 + 0.638696i \(0.779474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 53.6656i 2.84427i
\(357\) 0 0
\(358\) 44.7214 2.36360
\(359\) 13.4164i 0.708091i −0.935228 0.354045i \(-0.884806\pi\)
0.935228 0.354045i \(-0.115194\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 22.3607 1.17525
\(363\) 0 0
\(364\) 24.0000 1.25794
\(365\) −13.4164 26.8328i −0.702247 1.40449i
\(366\) 0 0
\(367\) 8.94427 0.466887 0.233444 0.972370i \(-0.425001\pi\)
0.233444 + 0.972370i \(0.425001\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 0 0
\(370\) 10.0000 + 20.0000i 0.519875 + 1.03975i
\(371\) 8.00000 0.415339
\(372\) 0 0
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 44.7214i 2.31249i
\(375\) 0 0
\(376\) 20.0000 1.03142
\(377\) 17.8885 + 12.0000i 0.921307 + 0.618031i
\(378\) 0 0
\(379\) 4.47214i 0.229718i 0.993382 + 0.114859i \(0.0366417\pi\)
−0.993382 + 0.114859i \(0.963358\pi\)
\(380\) −26.8328 + 13.4164i −1.37649 + 0.688247i
\(381\) 0 0
\(382\) 30.0000i 1.53493i
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) 0 0
\(385\) 8.94427 + 17.8885i 0.455842 + 0.911685i
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) 13.4164 0.681115
\(389\) 8.94427i 0.453493i 0.973954 + 0.226746i \(0.0728088\pi\)
−0.973954 + 0.226746i \(0.927191\pi\)
\(390\) 0 0
\(391\) 26.8328i 1.35699i
\(392\) −6.70820 −0.338815
\(393\) 0 0
\(394\) 26.8328i 1.35182i
\(395\) −26.8328 + 13.4164i −1.35011 + 0.675053i
\(396\) 0 0
\(397\) 12.0000i 0.602263i −0.953583 0.301131i \(-0.902636\pi\)
0.953583 0.301131i \(-0.0973643\pi\)
\(398\) −35.7771 −1.79334
\(399\) 0 0
\(400\) 3.00000 4.00000i 0.150000 0.200000i
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) −17.8885 −0.891092
\(404\) 26.8328i 1.33498i
\(405\) 0 0
\(406\) 20.0000 + 13.4164i 0.992583 + 0.665845i
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 18.0000i 0.886796i
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) 12.0000 6.00000i 0.589057 0.294528i
\(416\) 26.8328i 1.31559i
\(417\) 0 0
\(418\) −44.7214 −2.18739
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) 8.94427i 0.435917i −0.975958 0.217959i \(-0.930060\pi\)
0.975958 0.217959i \(-0.0699398\pi\)
\(422\) 50.0000i 2.43396i
\(423\) 0 0
\(424\) 8.94427i 0.434372i
\(425\) 13.4164 17.8885i 0.650791 0.867722i
\(426\) 0 0
\(427\) −17.8885 −0.865687
\(428\) 6.00000i 0.290021i
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) 40.2492 1.93425 0.967127 0.254293i \(-0.0818429\pi\)
0.967127 + 0.254293i \(0.0818429\pi\)
\(434\) −20.0000 −0.960031
\(435\) 0 0
\(436\) −30.0000 −1.43674
\(437\) −26.8328 −1.28359
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) −20.0000 + 10.0000i −0.953463 + 0.476731i
\(441\) 0 0
\(442\) 40.0000i 1.90261i
\(443\) 17.8885 0.849910 0.424955 0.905214i \(-0.360290\pi\)
0.424955 + 0.905214i \(0.360290\pi\)
\(444\) 0 0
\(445\) −35.7771 + 17.8885i −1.69600 + 0.847998i
\(446\) 31.3050i 1.48233i
\(447\) 0 0
\(448\) 26.0000i 1.22838i
\(449\) 17.8885i 0.844213i 0.906546 + 0.422106i \(0.138709\pi\)
−0.906546 + 0.422106i \(0.861291\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −13.4164 −0.631055
\(453\) 0 0
\(454\) 40.2492i 1.88899i
\(455\) 8.00000 + 16.0000i 0.375046 + 0.750092i
\(456\) 0 0
\(457\) 32.0000i 1.49690i 0.663193 + 0.748448i \(0.269201\pi\)
−0.663193 + 0.748448i \(0.730799\pi\)
\(458\) 60.0000i 2.80362i
\(459\) 0 0
\(460\) −36.0000 + 18.0000i −1.67851 + 0.839254i
\(461\) 26.8328i 1.24973i −0.780733 0.624864i \(-0.785154\pi\)
0.780733 0.624864i \(-0.214846\pi\)
\(462\) 0 0
\(463\) 34.0000i 1.58011i 0.613033 + 0.790057i \(0.289949\pi\)
−0.613033 + 0.790057i \(0.710051\pi\)
\(464\) 3.00000 4.47214i 0.139272 0.207614i
\(465\) 0 0
\(466\) 53.6656i 2.48601i
\(467\) −17.8885 −0.827783 −0.413892 0.910326i \(-0.635831\pi\)
−0.413892 + 0.910326i \(0.635831\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 20.0000 + 40.0000i 0.922531 + 1.84506i
\(471\) 0 0
\(472\) 8.94427 0.411693
\(473\) 0 0
\(474\) 0 0
\(475\) −17.8885 13.4164i −0.820783 0.615587i
\(476\) 26.8328i 1.22988i
\(477\) 0 0
\(478\) 53.6656 2.45461
\(479\) 13.4164i 0.613011i −0.951869 0.306506i \(-0.900840\pi\)
0.951869 0.306506i \(-0.0991598\pi\)
\(480\) 0 0
\(481\) 17.8885i 0.815647i
\(482\) −22.3607 −1.01850
\(483\) 0 0
\(484\) −27.0000 −1.22727
\(485\) 4.47214 + 8.94427i 0.203069 + 0.406138i
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 20.0000i 0.905357i
\(489\) 0 0
\(490\) −6.70820 13.4164i −0.303046 0.606092i
\(491\) 13.4164i 0.605474i 0.953074 + 0.302737i \(0.0979004\pi\)
−0.953074 + 0.302737i \(0.902100\pi\)
\(492\) 0 0
\(493\) 13.4164 20.0000i 0.604245 0.900755i
\(494\) −40.0000 −1.79969
\(495\) 0 0
\(496\) 4.47214i 0.200805i
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) −33.0000 6.00000i −1.47580 0.268328i
\(501\) 0 0
\(502\) 10.0000i 0.446322i
\(503\) 8.94427 0.398805 0.199403 0.979918i \(-0.436100\pi\)
0.199403 + 0.979918i \(0.436100\pi\)
\(504\) 0 0
\(505\) 17.8885 8.94427i 0.796030 0.398015i
\(506\) −60.0000 −2.66733
\(507\) 0 0
\(508\) −26.8328 −1.19051
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 26.8328i 1.18701i
\(512\) −11.1803 −0.494106
\(513\) 0 0
\(514\) 17.8885i 0.789030i
\(515\) 12.0000 6.00000i 0.528783 0.264392i
\(516\) 0 0
\(517\) 40.0000i 1.75920i
\(518\) 20.0000i 0.878750i
\(519\) 0 0
\(520\) −17.8885 + 8.94427i −0.784465 + 0.392232i
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 26.0000i 1.13690i −0.822718 0.568450i \(-0.807543\pi\)
0.822718 0.568450i \(-0.192457\pi\)
\(524\) 13.4164i 0.586098i
\(525\) 0 0
\(526\) 60.0000 2.61612
\(527\) 20.0000i 0.871214i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) −17.8885 + 8.94427i −0.777029 + 0.388514i
\(531\) 0 0
\(532\) −26.8328 −1.16335
\(533\) 0 0
\(534\) 0 0
\(535\) −4.00000 + 2.00000i −0.172935 + 0.0864675i
\(536\) 4.47214i 0.193167i
\(537\) 0 0
\(538\) 20.0000i 0.862261i
\(539\) 13.4164i 0.577886i
\(540\) 0 0
\(541\) 8.94427i 0.384544i −0.981342 0.192272i \(-0.938414\pi\)
0.981342 0.192272i \(-0.0615856\pi\)
\(542\) 30.0000i 1.28861i
\(543\) 0 0
\(544\) −30.0000 −1.28624
\(545\) −10.0000 20.0000i −0.428353 0.856706i
\(546\) 0 0
\(547\) 38.0000i 1.62476i 0.583127 + 0.812381i \(0.301829\pi\)
−0.583127 + 0.812381i \(0.698171\pi\)
\(548\) 40.2492 1.71936
\(549\) 0 0
\(550\) −40.0000 30.0000i −1.70561 1.27920i
\(551\) −20.0000 13.4164i −0.852029 0.571558i
\(552\) 0 0
\(553\) −26.8328 −1.14105
\(554\) 62.6099i 2.66004i
\(555\) 0 0
\(556\) −60.0000 −2.54457
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.00000 2.00000i 0.169031 0.0845154i
\(561\) 0 0
\(562\) 40.2492 1.69781
\(563\) 17.8885 0.753912 0.376956 0.926231i \(-0.376971\pi\)
0.376956 + 0.926231i \(0.376971\pi\)
\(564\) 0 0
\(565\) −4.47214 8.94427i −0.188144 0.376288i
\(566\) 13.4164i 0.563934i
\(567\) 0 0
\(568\) 0 0
\(569\) 35.7771i 1.49985i 0.661521 + 0.749927i \(0.269911\pi\)
−0.661521 + 0.749927i \(0.730089\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) −53.6656 −2.24387
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 18.0000i −1.00087 0.750652i
\(576\) 0 0
\(577\) 4.47214 0.186177 0.0930887 0.995658i \(-0.470326\pi\)
0.0930887 + 0.995658i \(0.470326\pi\)
\(578\) −6.70820 −0.279024
\(579\) 0 0
\(580\) −35.8328 4.58359i −1.48788 0.190323i
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −17.8885 −0.740868
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −10.0000 −0.413096
\(587\) 38.0000i 1.56843i −0.620491 0.784214i \(-0.713066\pi\)
0.620491 0.784214i \(-0.286934\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) 8.94427 + 17.8885i 0.368230 + 0.736460i
\(591\) 0 0
\(592\) 4.47214 0.183804
\(593\) 24.0000i 0.985562i 0.870153 + 0.492781i \(0.164020\pi\)
−0.870153 + 0.492781i \(0.835980\pi\)
\(594\) 0 0
\(595\) 17.8885 8.94427i 0.733359 0.366679i
\(596\) 30.0000 1.22885
\(597\) 0 0
\(598\) −53.6656 −2.19455
\(599\) 31.3050i 1.27909i −0.768755 0.639543i \(-0.779124\pi\)
0.768755 0.639543i \(-0.220876\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.00000 18.0000i −0.365902 0.731804i
\(606\) 0 0
\(607\) −26.8328 −1.08911 −0.544555 0.838725i \(-0.683302\pi\)
−0.544555 + 0.838725i \(0.683302\pi\)
\(608\) 30.0000i 1.21666i
\(609\) 0 0
\(610\) 40.0000 20.0000i 1.61955 0.809776i
\(611\) 35.7771i 1.44739i
\(612\) 0 0
\(613\) 4.00000i 0.161558i −0.996732 0.0807792i \(-0.974259\pi\)
0.996732 0.0807792i \(-0.0257409\pi\)
\(614\) 40.0000 1.61427
\(615\) 0 0
\(616\) −20.0000 −0.805823
\(617\) 13.4164 0.540124 0.270062 0.962843i \(-0.412956\pi\)
0.270062 + 0.962843i \(0.412956\pi\)
\(618\) 0 0
\(619\) 4.47214i 0.179750i 0.995953 + 0.0898752i \(0.0286468\pi\)
−0.995953 + 0.0898752i \(0.971353\pi\)
\(620\) 26.8328 13.4164i 1.07763 0.538816i
\(621\) 0 0
\(622\) 50.0000i 2.00482i
\(623\) −35.7771 −1.43338
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 35.7771i 1.42994i
\(627\) 0 0
\(628\) 40.2492 1.60612
\(629\) 20.0000 0.797452
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 30.0000i 1.19334i
\(633\) 0 0
\(634\) −50.0000 −1.98575
\(635\) −8.94427 17.8885i −0.354943 0.709885i
\(636\) 0 0
\(637\) 12.0000i 0.475457i
\(638\) −44.7214 30.0000i −1.77054 1.18771i
\(639\) 0 0
\(640\) 15.6525 + 31.3050i 0.618718 + 1.23744i
\(641\) 17.8885i 0.706555i 0.935519 + 0.353278i \(0.114933\pi\)
−0.935519 + 0.353278i \(0.885067\pi\)
\(642\) 0 0
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) −36.0000 −1.41860
\(645\) 0 0
\(646\) 44.7214i 1.75954i
\(647\) 2.00000i 0.0786281i −0.999227 0.0393141i \(-0.987483\pi\)
0.999227 0.0393141i \(-0.0125173\pi\)
\(648\) 0 0
\(649\) 17.8885i 0.702187i
\(650\) −35.7771 26.8328i −1.40329 1.05247i
\(651\) 0 0
\(652\) −53.6656 −2.10171
\(653\) 22.3607 0.875041 0.437521 0.899208i \(-0.355857\pi\)
0.437521 + 0.899208i \(0.355857\pi\)
\(654\) 0 0
\(655\) 8.94427 4.47214i 0.349482 0.174741i
\(656\) 0 0
\(657\) 0 0
\(658\) 40.0000i 1.55936i
\(659\) 31.3050i 1.21947i 0.792606 + 0.609734i \(0.208724\pi\)
−0.792606 + 0.609734i \(0.791276\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 30.0000i 1.16598i
\(663\) 0 0
\(664\) 13.4164i 0.520658i
\(665\) −8.94427 17.8885i −0.346844 0.693688i
\(666\) 0 0
\(667\) −26.8328 18.0000i −1.03897 0.696963i
\(668\) 66.0000i 2.55362i
\(669\) 0 0
\(670\) −8.94427 + 4.47214i −0.345547 + 0.172774i
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 16.0000i 0.616755i −0.951264 0.308377i \(-0.900214\pi\)
0.951264 0.308377i \(-0.0997859\pi\)
\(674\) −10.0000 −0.385186
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 4.47214 0.171878 0.0859391 0.996300i \(-0.472611\pi\)
0.0859391 + 0.996300i \(0.472611\pi\)
\(678\) 0 0
\(679\) 8.94427i 0.343250i
\(680\) 10.0000 + 20.0000i 0.383482 + 0.766965i
\(681\) 0 0
\(682\) 44.7214 1.71247
\(683\) 6.00000i 0.229584i −0.993390 0.114792i \(-0.963380\pi\)
0.993390 0.114792i \(-0.0366201\pi\)
\(684\) 0 0
\(685\) 13.4164 + 26.8328i 0.512615 + 1.02523i
\(686\) 44.7214i 1.70747i
\(687\) 0 0
\(688\) 0 0
\(689\) −16.0000 −0.609551
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 12.0000i 0.456172i
\(693\) 0 0
\(694\) 4.47214i 0.169760i
\(695\) −20.0000 40.0000i −0.758643 1.51729i
\(696\) 0 0
\(697\) 0 0
\(698\) −13.4164 −0.507819
\(699\) 0 0
\(700\) −24.0000 18.0000i −0.907115 0.680336i
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 20.0000i 0.754314i
\(704\) 58.1378i 2.19115i
\(705\) 0 0
\(706\) 53.6656i 2.01973i
\(707\) 17.8885 0.672768
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 40.0000i 1.49906i
\(713\) 26.8328 1.00490
\(714\) 0 0
\(715\) −17.8885 35.7771i −0.668994 1.33799i
\(716\) −60.0000 −2.24231
\(717\) 0 0
\(718\) 30.0000i 1.11959i
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 2.23607 0.0832178
\(723\) 0 0
\(724\) −30.0000 −1.11494
\(725\) −8.88854 25.4164i −0.330112 0.943942i
\(726\) 0 0
\(727\) 26.8328 0.995174 0.497587 0.867414i \(-0.334220\pi\)
0.497587 + 0.867414i \(0.334220\pi\)
\(728\) −17.8885 −0.662994
\(729\) 0 0
\(730\) 30.0000 + 60.0000i 1.11035 + 2.22070i
\(731\) 0 0
\(732\) 0 0
\(733\) 13.4164 0.495546 0.247773 0.968818i \(-0.420301\pi\)
0.247773 + 0.968818i \(0.420301\pi\)
\(734\) −20.0000 −0.738213
\(735\) 0 0
\(736\) 40.2492i 1.48361i
\(737\) −8.94427 −0.329466
\(738\) 0 0
\(739\) 40.2492i 1.48059i 0.672281 + 0.740296i \(0.265315\pi\)
−0.672281 + 0.740296i \(0.734685\pi\)
\(740\) −13.4164 26.8328i −0.493197 0.986394i
\(741\) 0 0
\(742\) −17.8885 −0.656709
\(743\) 8.94427 0.328134 0.164067 0.986449i \(-0.447539\pi\)
0.164067 + 0.986449i \(0.447539\pi\)
\(744\) 0 0
\(745\) 10.0000 + 20.0000i 0.366372 + 0.732743i
\(746\) 8.94427i 0.327473i
\(747\) 0 0
\(748\) 60.0000i 2.19382i
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) 40.2492i 1.46872i −0.678763 0.734358i \(-0.737484\pi\)
0.678763 0.734358i \(-0.262516\pi\)
\(752\) 8.94427 0.326164
\(753\) 0 0
\(754\) −40.0000 26.8328i −1.45671 0.977194i
\(755\) 0 0
\(756\) 0 0
\(757\) 31.3050 1.13780 0.568899 0.822407i \(-0.307370\pi\)
0.568899 + 0.822407i \(0.307370\pi\)
\(758\) 10.0000i 0.363216i
\(759\) 0 0
\(760\) 20.0000 10.0000i 0.725476 0.362738i
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) 40.2492i 1.45617i
\(765\) 0 0
\(766\) 13.4164i 0.484755i
\(767\) 16.0000i 0.577727i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) −20.0000 40.0000i −0.720750 1.44150i
\(771\) 0 0
\(772\) 13.4164 0.482867
\(773\) 40.2492 1.44766 0.723832 0.689976i \(-0.242379\pi\)
0.723832 + 0.689976i \(0.242379\pi\)
\(774\) 0 0
\(775\) 17.8885 + 13.4164i 0.642575 + 0.481932i
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) 20.0000i 0.717035i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 60.0000i 2.14560i
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 13.4164 + 26.8328i 0.478852 + 0.957704i
\(786\) 0 0
\(787\) 22.0000i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(788\) 36.0000i 1.28245i
\(789\) 0 0
\(790\) 60.0000 30.0000i 2.13470 1.06735i
\(791\) 8.94427i 0.318022i
\(792\) 0 0
\(793\) 35.7771 1.27048
\(794\) 26.8328i 0.952261i
\(795\) 0 0
\(796\) 48.0000 1.70131
\(797\) −13.4164 −0.475234 −0.237617 0.971359i \(-0.576366\pi\)
−0.237617 + 0.971359i \(0.576366\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) −20.1246 + 26.8328i −0.711512 + 0.948683i
\(801\) 0 0
\(802\) −67.0820 −2.36875
\(803\) 60.0000i 2.11735i
\(804\) 0 0
\(805\) −12.0000 24.0000i −0.422944 0.845889i
\(806\) 40.0000 1.40894
\(807\) 0 0
\(808\) 20.0000i 0.703598i
\(809\) 17.8885i 0.628928i 0.949269 + 0.314464i \(0.101825\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −26.8328 18.0000i −0.941647 0.631676i
\(813\) 0 0
\(814\) 44.7214i 1.56748i
\(815\) −17.8885 35.7771i −0.626608 1.25322i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) 26.8328 0.935333 0.467667 0.883905i \(-0.345095\pi\)
0.467667 + 0.883905i \(0.345095\pi\)
\(824\) 13.4164i 0.467383i
\(825\) 0 0
\(826\) 17.8885i 0.622422i
\(827\) 53.6656 1.86614 0.933068 0.359699i \(-0.117121\pi\)
0.933068 + 0.359699i \(0.117121\pi\)
\(828\) 0 0
\(829\) 8.94427i 0.310647i 0.987864 + 0.155324i \(0.0496421\pi\)
−0.987864 + 0.155324i \(0.950358\pi\)
\(830\) −26.8328 + 13.4164i −0.931381 + 0.465690i
\(831\) 0 0
\(832\) 52.0000i 1.80278i
\(833\) −13.4164 −0.464851
\(834\) 0 0
\(835\) −44.0000 + 22.0000i −1.52268 + 0.761341i
\(836\) 60.0000 2.07514
\(837\) 0 0
\(838\) −8.94427 −0.308975
\(839\) 31.3050i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(840\) 0 0
\(841\) −11.0000 26.8328i −0.379310 0.925270i
\(842\) 20.0000i 0.689246i
\(843\) 0 0
\(844\) 67.0820i 2.30906i
\(845\) −3.00000 6.00000i −0.103203 0.206406i
\(846\) 0 0
\(847\) 18.0000i 0.618487i
\(848\) 4.00000i 0.137361i
\(849\) 0 0
\(850\) −30.0000 + 40.0000i −1.02899 + 1.37199i
\(851\) 26.8328i 0.919817i
\(852\) 0 0
\(853\) −40.2492 −1.37811 −0.689054 0.724710i \(-0.741974\pi\)
−0.689054 + 0.724710i \(0.741974\pi\)
\(854\) 40.0000 1.36877
\(855\) 0 0
\(856\) 4.47214i 0.152854i
\(857\) 48.0000i 1.63965i 0.572615 + 0.819824i \(0.305929\pi\)
−0.572615 + 0.819824i \(0.694071\pi\)
\(858\) 0 0
\(859\) 4.47214i 0.152587i 0.997085 + 0.0762937i \(0.0243086\pi\)
−0.997085 + 0.0762937i \(0.975691\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −71.5542 −2.43714
\(863\) 54.0000i 1.83818i 0.394046 + 0.919091i \(0.371075\pi\)
−0.394046 + 0.919091i \(0.628925\pi\)
\(864\) 0 0
\(865\) −8.00000 + 4.00000i −0.272008 + 0.136004i
\(866\) −90.0000 −3.05832
\(867\) 0 0
\(868\) 26.8328 0.910765
\(869\) 60.0000 2.03536
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 22.3607 0.757228
\(873\) 0 0
\(874\) 60.0000 2.02953
\(875\) 4.00000 22.0000i 0.135225 0.743736i
\(876\) 0 0
\(877\) 12.0000i 0.405211i 0.979260 + 0.202606i \(0.0649409\pi\)
−0.979260 + 0.202606i \(0.935059\pi\)
\(878\) 35.7771 1.20742
\(879\) 0 0
\(880\) −8.94427 + 4.47214i −0.301511 + 0.150756i
\(881\) 17.8885i 0.602680i 0.953517 + 0.301340i \(0.0974340\pi\)
−0.953517 + 0.301340i \(0.902566\pi\)
\(882\) 0 0
\(883\) 54.0000i 1.81724i 0.417619 + 0.908622i \(0.362865\pi\)
−0.417619 + 0.908622i \(0.637135\pi\)
\(884\) 53.6656i 1.80497i
\(885\) 0 0
\(886\) −40.0000 −1.34383
\(887\) −44.7214 −1.50160 −0.750798 0.660532i \(-0.770331\pi\)
−0.750798 + 0.660532i \(0.770331\pi\)
\(888\) 0 0
\(889\) 17.8885i 0.599963i
\(890\) 80.0000 40.0000i 2.68161 1.34080i
\(891\) 0 0
\(892\) 42.0000i 1.40626i
\(893\) 40.0000i 1.33855i
\(894\) 0 0
\(895\) −20.0000 40.0000i −0.668526 1.33705i
\(896\) 31.3050i 1.04583i
\(897\) 0 0
\(898\) 40.0000i 1.33482i
\(899\) 20.0000 + 13.4164i 0.667037 + 0.447462i
\(900\) 0 0
\(901\) 17.8885i 0.595954i
\(902\) 0 0
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) −10.0000 20.0000i −0.332411 0.664822i
\(906\) 0 0
\(907\) −17.8885 −0.593979 −0.296990 0.954881i \(-0.595983\pi\)
−0.296990 + 0.954881i \(0.595983\pi\)
\(908\) 54.0000i 1.79205i
\(909\) 0 0
\(910\) −17.8885 35.7771i −0.592999 1.18600i
\(911\) 4.47214i 0.148168i 0.997252 + 0.0740842i \(0.0236034\pi\)
−0.997252 + 0.0740842i \(0.976397\pi\)
\(912\) 0 0
\(913\) −26.8328 −0.888037
\(914\) 71.5542i 2.36680i
\(915\) 0 0
\(916\) 80.4984i 2.65974i
\(917\) 8.94427 0.295366
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 26.8328 13.4164i 0.884652 0.442326i
\(921\) 0 0
\(922\) 60.0000i 1.97599i
\(923\) 0 0
\(924\) 0 0
\(925\) 13.4164 17.8885i 0.441129 0.588172i
\(926\) 76.0263i 2.49838i
\(927\) 0 0
\(928\) −20.1246 + 30.0000i −0.660623 + 0.984798i
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 13.4164i 0.439705i
\(932\) 72.0000i 2.35844i
\(933\) 0 0
\(934\) 40.0000 1.30884
\(935\) −40.0000 + 20.0000i −1.30814 + 0.654070i
\(936\) 0 0
\(937\) 32.0000i 1.04539i −0.852518 0.522697i \(-0.824926\pi\)
0.852518 0.522697i \(-0.175074\pi\)
\(938\) −8.94427 −0.292041
\(939\) 0 0
\(940\) −26.8328 53.6656i −0.875190 1.75038i
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −17.8885 −0.581300 −0.290650 0.956830i \(-0.593871\pi\)
−0.290650 + 0.956830i \(0.593871\pi\)
\(948\) 0 0
\(949\) 53.6656i 1.74206i
\(950\) 40.0000 + 30.0000i 1.29777 + 0.973329i
\(951\) 0 0
\(952\) 20.0000i 0.648204i
\(953\) 24.0000i 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) 26.8328 13.4164i 0.868290 0.434145i
\(956\) −72.0000 −2.32865
\(957\) 0 0
\(958\) 30.0000i 0.969256i
\(959\) 26.8328i 0.866477i
\(960\) 0 0
\(961\) 11.0000 0.354839
\(962\) 40.0000i 1.28965i
\(963\) 0 0
\(964\) 30.0000 0.966235
\(965\) 4.47214 + 8.94427i 0.143963 + 0.287926i
\(966\) 0 0
\(967\) 44.7214 1.43814 0.719071 0.694937i \(-0.244568\pi\)
0.719071 + 0.694937i \(0.244568\pi\)
\(968\) 20.1246 0.646830
\(969\) 0 0
\(970\) −10.0000 20.0000i −0.321081 0.642161i
\(971\) 22.3607i 0.717588i −0.933417 0.358794i \(-0.883188\pi\)
0.933417 0.358794i \(-0.116812\pi\)
\(972\) 0 0
\(973\) 40.0000i 1.28234i
\(974\) 4.47214i 0.143296i
\(975\) 0 0
\(976\) 8.94427i 0.286299i
\(977\) 8.00000i 0.255943i −0.991778 0.127971i \(-0.959153\pi\)
0.991778 0.127971i \(-0.0408466\pi\)
\(978\) 0 0
\(979\) 80.0000 2.55681
\(980\) 9.00000 + 18.0000i 0.287494 + 0.574989i
\(981\) 0 0
\(982\) 30.0000i 0.957338i
\(983\) −26.8328 −0.855834 −0.427917 0.903818i \(-0.640752\pi\)
−0.427917 + 0.903818i \(0.640752\pi\)
\(984\) 0 0
\(985\) 24.0000 12.0000i 0.764704 0.382352i
\(986\) −30.0000 + 44.7214i −0.955395 + 1.42422i
\(987\) 0 0
\(988\) 53.6656 1.70733
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 30.0000i 0.952501i
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0000 + 32.0000i 0.507234 + 1.01447i
\(996\) 0 0
\(997\) −40.2492 −1.27471 −0.637353 0.770572i \(-0.719971\pi\)
−0.637353 + 0.770572i \(0.719971\pi\)
\(998\) −44.7214 −1.41563
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.f.h.289.2 4
3.2 odd 2 145.2.d.b.144.3 yes 4
5.4 even 2 inner 1305.2.f.h.289.3 4
12.11 even 2 2320.2.j.b.289.1 4
15.2 even 4 725.2.c.a.376.2 2
15.8 even 4 725.2.c.b.376.1 2
15.14 odd 2 145.2.d.b.144.2 yes 4
29.28 even 2 inner 1305.2.f.h.289.4 4
60.59 even 2 2320.2.j.b.289.3 4
87.86 odd 2 145.2.d.b.144.1 4
145.144 even 2 inner 1305.2.f.h.289.1 4
348.347 even 2 2320.2.j.b.289.2 4
435.173 even 4 725.2.c.b.376.2 2
435.347 even 4 725.2.c.a.376.1 2
435.434 odd 2 145.2.d.b.144.4 yes 4
1740.1739 even 2 2320.2.j.b.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.d.b.144.1 4 87.86 odd 2
145.2.d.b.144.2 yes 4 15.14 odd 2
145.2.d.b.144.3 yes 4 3.2 odd 2
145.2.d.b.144.4 yes 4 435.434 odd 2
725.2.c.a.376.1 2 435.347 even 4
725.2.c.a.376.2 2 15.2 even 4
725.2.c.b.376.1 2 15.8 even 4
725.2.c.b.376.2 2 435.173 even 4
1305.2.f.h.289.1 4 145.144 even 2 inner
1305.2.f.h.289.2 4 1.1 even 1 trivial
1305.2.f.h.289.3 4 5.4 even 2 inner
1305.2.f.h.289.4 4 29.28 even 2 inner
2320.2.j.b.289.1 4 12.11 even 2
2320.2.j.b.289.2 4 348.347 even 2
2320.2.j.b.289.3 4 60.59 even 2
2320.2.j.b.289.4 4 1740.1739 even 2