Properties

Label 2320.2.j.b.289.3
Level $2320$
Weight $2$
Character 2320.289
Analytic conductor $18.525$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,2,Mod(289,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 2320.289
Dual form 2320.2.j.b.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 2.00000i) q^{5} +2.00000i q^{7} -3.00000 q^{9} -4.47214i q^{11} +4.00000i q^{13} -4.47214 q^{17} -4.47214i q^{19} -6.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} +(3.00000 - 4.47214i) q^{29} +4.47214i q^{31} +(-4.00000 - 2.00000i) q^{35} +4.47214 q^{37} +(3.00000 - 6.00000i) q^{45} +8.94427 q^{47} +3.00000 q^{49} -4.00000i q^{53} +(8.94427 + 4.47214i) q^{55} -4.00000 q^{59} +8.94427i q^{61} -6.00000i q^{63} +(-8.00000 - 4.00000i) q^{65} -2.00000i q^{67} +13.4164 q^{73} +8.94427 q^{77} -13.4164i q^{79} +9.00000 q^{81} +6.00000i q^{83} +(4.47214 - 8.94427i) q^{85} -17.8885i q^{89} -8.00000 q^{91} +(8.94427 + 4.47214i) q^{95} -4.47214 q^{97} +13.4164i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 12 q^{9} - 12 q^{25} + 12 q^{29} - 16 q^{35} + 12 q^{45} + 12 q^{49} - 16 q^{59} - 32 q^{65} + 36 q^{81} - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 4.47214i 1.34840i −0.738549 0.674200i \(-0.764489\pi\)
0.738549 0.674200i \(-0.235511\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) 4.47214i 1.02598i −0.858395 0.512989i \(-0.828538\pi\)
0.858395 0.512989i \(-0.171462\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 4.47214i 0.557086 0.830455i
\(30\) 0 0
\(31\) 4.47214i 0.803219i 0.915811 + 0.401610i \(0.131549\pi\)
−0.915811 + 0.401610i \(0.868451\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 0 0
\(37\) 4.47214 0.735215 0.367607 0.929981i \(-0.380177\pi\)
0.367607 + 0.929981i \(0.380177\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 3.00000 6.00000i 0.447214 0.894427i
\(46\) 0 0
\(47\) 8.94427 1.30466 0.652328 0.757937i \(-0.273792\pi\)
0.652328 + 0.757937i \(0.273792\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.00000i 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 8.94427 + 4.47214i 1.20605 + 0.603023i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 8.94427i 1.14520i 0.819836 + 0.572598i \(0.194065\pi\)
−0.819836 + 0.572598i \(0.805935\pi\)
\(62\) 0 0
\(63\) 6.00000i 0.755929i
\(64\) 0 0
\(65\) −8.00000 4.00000i −0.992278 0.496139i
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 13.4164 1.57027 0.785136 0.619324i \(-0.212593\pi\)
0.785136 + 0.619324i \(0.212593\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.94427 1.01929
\(78\) 0 0
\(79\) 13.4164i 1.50946i −0.656033 0.754732i \(-0.727767\pi\)
0.656033 0.754732i \(-0.272233\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 4.47214 8.94427i 0.485071 0.970143i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.8885i 1.89618i −0.317999 0.948091i \(-0.603011\pi\)
0.317999 0.948091i \(-0.396989\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.94427 + 4.47214i 0.917663 + 0.458831i
\(96\) 0 0
\(97\) −4.47214 −0.454077 −0.227038 0.973886i \(-0.572904\pi\)
−0.227038 + 0.973886i \(0.572904\pi\)
\(98\) 0 0
\(99\) 13.4164i 1.34840i
\(100\) 0 0
\(101\) 8.94427i 0.889988i 0.895533 + 0.444994i \(0.146794\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000i 0.193347i −0.995316 0.0966736i \(-0.969180\pi\)
0.995316 0.0966736i \(-0.0308203\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.47214 −0.420703 −0.210352 0.977626i \(-0.567461\pi\)
−0.210352 + 0.977626i \(0.567461\pi\)
\(114\) 0 0
\(115\) 12.0000 + 6.00000i 1.11901 + 0.559503i
\(116\) 0 0
\(117\) 12.0000i 1.10940i
\(118\) 0 0
\(119\) 8.94427i 0.819920i
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) −8.94427 −0.793676 −0.396838 0.917889i \(-0.629892\pi\)
−0.396838 + 0.917889i \(0.629892\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.47214i 0.390732i −0.980730 0.195366i \(-0.937410\pi\)
0.980730 0.195366i \(-0.0625895\pi\)
\(132\) 0 0
\(133\) 8.94427 0.775567
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4164 1.14624 0.573121 0.819471i \(-0.305733\pi\)
0.573121 + 0.819471i \(0.305733\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 17.8885 1.49592
\(144\) 0 0
\(145\) 5.94427 + 10.4721i 0.493645 + 0.869664i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 13.4164 1.08465
\(154\) 0 0
\(155\) −8.94427 4.47214i −0.718421 0.359211i
\(156\) 0 0
\(157\) −13.4164 −1.07075 −0.535373 0.844616i \(-0.679829\pi\)
−0.535373 + 0.844616i \(0.679829\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −17.8885 −1.40114 −0.700569 0.713584i \(-0.747071\pi\)
−0.700569 + 0.713584i \(0.747071\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.0000i 1.70241i −0.524832 0.851206i \(-0.675872\pi\)
0.524832 0.851206i \(-0.324128\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 13.4164i 1.02598i
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 8.00000 6.00000i 0.604743 0.453557i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.47214 + 8.94427i −0.328798 + 0.657596i
\(186\) 0 0
\(187\) 20.0000i 1.46254i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.4164i 0.970777i −0.874299 0.485389i \(-0.838678\pi\)
0.874299 0.485389i \(-0.161322\pi\)
\(192\) 0 0
\(193\) −4.47214 −0.321911 −0.160956 0.986962i \(-0.551458\pi\)
−0.160956 + 0.986962i \(0.551458\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.94427 + 6.00000i 0.627765 + 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 18.0000i 1.25109i
\(208\) 0 0
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) 22.3607i 1.53937i −0.638422 0.769686i \(-0.720413\pi\)
0.638422 0.769686i \(-0.279587\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −8.94427 −0.607177
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17.8885i 1.20331i
\(222\) 0 0
\(223\) 14.0000i 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 0 0
\(225\) 9.00000 + 12.0000i 0.600000 + 0.800000i
\(226\) 0 0
\(227\) 18.0000i 1.19470i −0.801980 0.597351i \(-0.796220\pi\)
0.801980 0.597351i \(-0.203780\pi\)
\(228\) 0 0
\(229\) 26.8328i 1.77316i −0.462573 0.886581i \(-0.653074\pi\)
0.462573 0.886581i \(-0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0000i 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) 0 0
\(235\) −8.94427 + 17.8885i −0.583460 + 1.16692i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 + 6.00000i −0.191663 + 0.383326i
\(246\) 0 0
\(247\) 17.8885 1.13822
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.47214i 0.282279i −0.989990 0.141139i \(-0.954923\pi\)
0.989990 0.141139i \(-0.0450766\pi\)
\(252\) 0 0
\(253\) −26.8328 −1.68696
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 0 0
\(259\) 8.94427i 0.555770i
\(260\) 0 0
\(261\) −9.00000 + 13.4164i −0.557086 + 0.830455i
\(262\) 0 0
\(263\) 26.8328 1.65458 0.827291 0.561773i \(-0.189881\pi\)
0.827291 + 0.561773i \(0.189881\pi\)
\(264\) 0 0
\(265\) 8.00000 + 4.00000i 0.491436 + 0.245718i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.94427i 0.545342i 0.962107 + 0.272671i \(0.0879070\pi\)
−0.962107 + 0.272671i \(0.912093\pi\)
\(270\) 0 0
\(271\) 13.4164i 0.814989i −0.913208 0.407494i \(-0.866403\pi\)
0.913208 0.407494i \(-0.133597\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −17.8885 + 13.4164i −1.07872 + 0.809040i
\(276\) 0 0
\(277\) 28.0000i 1.68236i 0.540758 + 0.841178i \(0.318138\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 13.4164i 0.803219i
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 6.00000i 0.356663i 0.983970 + 0.178331i \(0.0570699\pi\)
−0.983970 + 0.178331i \(0.942930\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.47214 0.261265 0.130632 0.991431i \(-0.458299\pi\)
0.130632 + 0.991431i \(0.458299\pi\)
\(294\) 0 0
\(295\) 4.00000 8.00000i 0.232889 0.465778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.8885 8.94427i −1.02430 0.512148i
\(306\) 0 0
\(307\) −17.8885 −1.02095 −0.510477 0.859892i \(-0.670531\pi\)
−0.510477 + 0.859892i \(0.670531\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.3607i 1.26796i 0.773350 + 0.633979i \(0.218579\pi\)
−0.773350 + 0.633979i \(0.781421\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i −0.891923 0.452187i \(-0.850644\pi\)
0.891923 0.452187i \(-0.149356\pi\)
\(314\) 0 0
\(315\) 12.0000 + 6.00000i 0.676123 + 0.338062i
\(316\) 0 0
\(317\) 22.3607 1.25590 0.627950 0.778253i \(-0.283894\pi\)
0.627950 + 0.778253i \(0.283894\pi\)
\(318\) 0 0
\(319\) −20.0000 13.4164i −1.11979 0.751175i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.0000i 1.11283i
\(324\) 0 0
\(325\) 16.0000 12.0000i 0.887520 0.665640i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 17.8885i 0.986227i
\(330\) 0 0
\(331\) 13.4164i 0.737432i 0.929542 + 0.368716i \(0.120203\pi\)
−0.929542 + 0.368716i \(0.879797\pi\)
\(332\) 0 0
\(333\) −13.4164 −0.735215
\(334\) 0 0
\(335\) 4.00000 + 2.00000i 0.218543 + 0.109272i
\(336\) 0 0
\(337\) −4.47214 −0.243613 −0.121806 0.992554i \(-0.538869\pi\)
−0.121806 + 0.992554i \(0.538869\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000i 0.107366i −0.998558 0.0536828i \(-0.982904\pi\)
0.998558 0.0536828i \(-0.0170960\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.0000i 1.27739i 0.769460 + 0.638696i \(0.220526\pi\)
−0.769460 + 0.638696i \(0.779474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.4164i 0.708091i −0.935228 0.354045i \(-0.884806\pi\)
0.935228 0.354045i \(-0.115194\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.4164 + 26.8328i −0.702247 + 1.40449i
\(366\) 0 0
\(367\) 8.94427 0.466887 0.233444 0.972370i \(-0.425001\pi\)
0.233444 + 0.972370i \(0.425001\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.00000 0.415339
\(372\) 0 0
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.8885 + 12.0000i 0.921307 + 0.618031i
\(378\) 0 0
\(379\) 4.47214i 0.229718i −0.993382 0.114859i \(-0.963358\pi\)
0.993382 0.114859i \(-0.0366417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.00000i 0.306586i −0.988181 0.153293i \(-0.951012\pi\)
0.988181 0.153293i \(-0.0489878\pi\)
\(384\) 0 0
\(385\) −8.94427 + 17.8885i −0.455842 + 0.911685i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.94427i 0.453493i −0.973954 0.226746i \(-0.927191\pi\)
0.973954 0.226746i \(-0.0728088\pi\)
\(390\) 0 0
\(391\) 26.8328i 1.35699i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.8328 + 13.4164i 1.35011 + 0.675053i
\(396\) 0 0
\(397\) 12.0000i 0.602263i 0.953583 + 0.301131i \(0.0973643\pi\)
−0.953583 + 0.301131i \(0.902636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) −17.8885 −0.891092
\(404\) 0 0
\(405\) −9.00000 + 18.0000i −0.447214 + 0.894427i
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) 8.94427i 0.435917i −0.975958 0.217959i \(-0.930060\pi\)
0.975958 0.217959i \(-0.0699398\pi\)
\(422\) 0 0
\(423\) −26.8328 −1.30466
\(424\) 0 0
\(425\) 13.4164 + 17.8885i 0.650791 + 0.867722i
\(426\) 0 0
\(427\) −17.8885 −0.865687
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) −40.2492 −1.93425 −0.967127 0.254293i \(-0.918157\pi\)
−0.967127 + 0.254293i \(0.918157\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −26.8328 −1.28359
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) −17.8885 −0.849910 −0.424955 0.905214i \(-0.639710\pi\)
−0.424955 + 0.905214i \(0.639710\pi\)
\(444\) 0 0
\(445\) 35.7771 + 17.8885i 1.69600 + 0.847998i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.8885i 0.844213i −0.906546 0.422106i \(-0.861291\pi\)
0.906546 0.422106i \(-0.138709\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.00000 16.0000i 0.375046 0.750092i
\(456\) 0 0
\(457\) 32.0000i 1.49690i −0.663193 0.748448i \(-0.730799\pi\)
0.663193 0.748448i \(-0.269201\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.8328i 1.24973i 0.780733 + 0.624864i \(0.214846\pi\)
−0.780733 + 0.624864i \(0.785154\pi\)
\(462\) 0 0
\(463\) 34.0000i 1.58011i 0.613033 + 0.790057i \(0.289949\pi\)
−0.613033 + 0.790057i \(0.710051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.8885 0.827783 0.413892 0.910326i \(-0.364169\pi\)
0.413892 + 0.910326i \(0.364169\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −17.8885 + 13.4164i −0.820783 + 0.615587i
\(476\) 0 0
\(477\) 12.0000i 0.549442i
\(478\) 0 0
\(479\) 13.4164i 0.613011i −0.951869 0.306506i \(-0.900840\pi\)
0.951869 0.306506i \(-0.0991598\pi\)
\(480\) 0 0
\(481\) 17.8885i 0.815647i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.47214 8.94427i 0.203069 0.406138i
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.4164i 0.605474i 0.953074 + 0.302737i \(0.0979004\pi\)
−0.953074 + 0.302737i \(0.902100\pi\)
\(492\) 0 0
\(493\) −13.4164 + 20.0000i −0.604245 + 0.900755i
\(494\) 0 0
\(495\) −26.8328 13.4164i −1.20605 0.603023i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.94427 −0.398805 −0.199403 0.979918i \(-0.563900\pi\)
−0.199403 + 0.979918i \(0.563900\pi\)
\(504\) 0 0
\(505\) −17.8885 8.94427i −0.796030 0.398015i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 26.8328i 1.18701i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.0000 + 6.00000i 0.528783 + 0.264392i
\(516\) 0 0
\(517\) 40.0000i 1.75920i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 26.0000i 1.13690i −0.822718 0.568450i \(-0.807543\pi\)
0.822718 0.568450i \(-0.192457\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000i 0.871214i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.00000 + 2.00000i 0.172935 + 0.0864675i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.4164i 0.577886i
\(540\) 0 0
\(541\) 8.94427i 0.384544i −0.981342 0.192272i \(-0.938414\pi\)
0.981342 0.192272i \(-0.0615856\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 20.0000i 0.428353 0.856706i
\(546\) 0 0
\(547\) 38.0000i 1.62476i 0.583127 + 0.812381i \(0.301829\pi\)
−0.583127 + 0.812381i \(0.698171\pi\)
\(548\) 0 0
\(549\) 26.8328i 1.14520i
\(550\) 0 0
\(551\) −20.0000 13.4164i −0.852029 0.571558i
\(552\) 0 0
\(553\) 26.8328 1.14105
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.8885 −0.753912 −0.376956 0.926231i \(-0.623029\pi\)
−0.376956 + 0.926231i \(0.623029\pi\)
\(564\) 0 0
\(565\) 4.47214 8.94427i 0.188144 0.376288i
\(566\) 0 0
\(567\) 18.0000i 0.755929i
\(568\) 0 0
\(569\) 35.7771i 1.49985i −0.661521 0.749927i \(-0.730089\pi\)
0.661521 0.749927i \(-0.269911\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 + 18.0000i −1.00087 + 0.750652i
\(576\) 0 0
\(577\) −4.47214 −0.186177 −0.0930887 0.995658i \(-0.529674\pi\)
−0.0930887 + 0.995658i \(0.529674\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) −17.8885 −0.740868
\(584\) 0 0
\(585\) 24.0000 + 12.0000i 0.992278 + 0.496139i
\(586\) 0 0
\(587\) 38.0000i 1.56843i 0.620491 + 0.784214i \(0.286934\pi\)
−0.620491 + 0.784214i \(0.713066\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.0000i 0.985562i 0.870153 + 0.492781i \(0.164020\pi\)
−0.870153 + 0.492781i \(0.835980\pi\)
\(594\) 0 0
\(595\) 17.8885 + 8.94427i 0.733359 + 0.366679i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 31.3050i 1.27909i −0.768755 0.639543i \(-0.779124\pi\)
0.768755 0.639543i \(-0.220876\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 6.00000i 0.244339i
\(604\) 0 0
\(605\) 9.00000 18.0000i 0.365902 0.731804i
\(606\) 0 0
\(607\) −26.8328 −1.08911 −0.544555 0.838725i \(-0.683302\pi\)
−0.544555 + 0.838725i \(0.683302\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 35.7771i 1.44739i
\(612\) 0 0
\(613\) 4.00000i 0.161558i 0.996732 + 0.0807792i \(0.0257409\pi\)
−0.996732 + 0.0807792i \(0.974259\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.4164 0.540124 0.270062 0.962843i \(-0.412956\pi\)
0.270062 + 0.962843i \(0.412956\pi\)
\(618\) 0 0
\(619\) 4.47214i 0.179750i −0.995953 0.0898752i \(-0.971353\pi\)
0.995953 0.0898752i \(-0.0286468\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 35.7771 1.43338
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.94427 17.8885i 0.354943 0.709885i
\(636\) 0 0
\(637\) 12.0000i 0.475457i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.8885i 0.706555i −0.935519 0.353278i \(-0.885067\pi\)
0.935519 0.353278i \(-0.114933\pi\)
\(642\) 0 0
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.00000i 0.0786281i 0.999227 + 0.0393141i \(0.0125173\pi\)
−0.999227 + 0.0393141i \(0.987483\pi\)
\(648\) 0 0
\(649\) 17.8885i 0.702187i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.3607 0.875041 0.437521 0.899208i \(-0.355857\pi\)
0.437521 + 0.899208i \(0.355857\pi\)
\(654\) 0 0
\(655\) 8.94427 + 4.47214i 0.349482 + 0.174741i
\(656\) 0 0
\(657\) −40.2492 −1.57027
\(658\) 0 0
\(659\) 31.3050i 1.21947i 0.792606 + 0.609734i \(0.208724\pi\)
−0.792606 + 0.609734i \(0.791276\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.94427 + 17.8885i −0.346844 + 0.693688i
\(666\) 0 0
\(667\) −26.8328 18.0000i −1.03897 0.696963i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 16.0000i 0.616755i 0.951264 + 0.308377i \(0.0997859\pi\)
−0.951264 + 0.308377i \(0.900214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.47214 0.171878 0.0859391 0.996300i \(-0.472611\pi\)
0.0859391 + 0.996300i \(0.472611\pi\)
\(678\) 0 0
\(679\) 8.94427i 0.343250i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.00000i 0.229584i 0.993390 + 0.114792i \(0.0366201\pi\)
−0.993390 + 0.114792i \(0.963380\pi\)
\(684\) 0 0
\(685\) −13.4164 + 26.8328i −0.512615 + 1.02523i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.0000 0.609551
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) −26.8328 −1.01929
\(694\) 0 0
\(695\) −20.0000 + 40.0000i −0.758643 + 1.51729i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 20.0000i 0.754314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −17.8885 −0.672768
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 40.2492i 1.50946i
\(712\) 0 0
\(713\) 26.8328 1.00490
\(714\) 0 0
\(715\) −17.8885 + 35.7771i −0.668994 + 1.33799i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26.8885 + 1.41641i −0.998615 + 0.0526041i
\(726\) 0 0
\(727\) 26.8328 0.995174 0.497587 0.867414i \(-0.334220\pi\)
0.497587 + 0.867414i \(0.334220\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −13.4164 −0.495546 −0.247773 0.968818i \(-0.579699\pi\)
−0.247773 + 0.968818i \(0.579699\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.94427 −0.329466
\(738\) 0 0
\(739\) 40.2492i 1.48059i −0.672281 0.740296i \(-0.734685\pi\)
0.672281 0.740296i \(-0.265315\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.94427 −0.328134 −0.164067 0.986449i \(-0.552461\pi\)
−0.164067 + 0.986449i \(0.552461\pi\)
\(744\) 0 0
\(745\) 10.0000 20.0000i 0.366372 0.732743i
\(746\) 0 0
\(747\) 18.0000i 0.658586i
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 40.2492i 1.46872i 0.678763 + 0.734358i \(0.262516\pi\)
−0.678763 + 0.734358i \(0.737484\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −31.3050 −1.13780 −0.568899 0.822407i \(-0.692630\pi\)
−0.568899 + 0.822407i \(0.692630\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) 0 0
\(765\) −13.4164 + 26.8328i −0.485071 + 0.970143i
\(766\) 0 0
\(767\) 16.0000i 0.577727i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 40.2492 1.44766 0.723832 0.689976i \(-0.242379\pi\)
0.723832 + 0.689976i \(0.242379\pi\)
\(774\) 0 0
\(775\) 17.8885 13.4164i 0.642575 0.481932i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.4164 26.8328i 0.478852 0.957704i
\(786\) 0 0
\(787\) 22.0000i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.94427i 0.318022i
\(792\) 0 0
\(793\) −35.7771 −1.27048
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.4164 −0.475234 −0.237617 0.971359i \(-0.576366\pi\)
−0.237617 + 0.971359i \(0.576366\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 0 0
\(801\) 53.6656i 1.89618i
\(802\) 0 0
\(803\) 60.0000i 2.11735i
\(804\) 0 0
\(805\) −12.0000 + 24.0000i −0.422944 + 0.845889i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.8885i 0.628928i −0.949269 0.314464i \(-0.898175\pi\)
0.949269 0.314464i \(-0.101825\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 17.8885 35.7771i 0.626608 1.25322i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 24.0000 0.838628
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 26.8328 0.935333 0.467667 0.883905i \(-0.345095\pi\)
0.467667 + 0.883905i \(0.345095\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −53.6656 −1.86614 −0.933068 0.359699i \(-0.882879\pi\)
−0.933068 + 0.359699i \(0.882879\pi\)
\(828\) 0 0
\(829\) 8.94427i 0.310647i 0.987864 + 0.155324i \(0.0496421\pi\)
−0.987864 + 0.155324i \(0.950358\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.4164 −0.464851
\(834\) 0 0
\(835\) 44.0000 + 22.0000i 1.52268 + 0.761341i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.3050i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(840\) 0 0
\(841\) −11.0000 26.8328i −0.379310 0.925270i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.00000 6.00000i 0.103203 0.206406i
\(846\) 0 0
\(847\) 18.0000i 0.618487i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 26.8328i 0.919817i
\(852\) 0 0
\(853\) 40.2492 1.37811 0.689054 0.724710i \(-0.258026\pi\)
0.689054 + 0.724710i \(0.258026\pi\)
\(854\) 0 0
\(855\) −26.8328 13.4164i −0.917663 0.458831i
\(856\) 0 0
\(857\) 48.0000i 1.63965i 0.572615 + 0.819824i \(0.305929\pi\)
−0.572615 + 0.819824i \(0.694071\pi\)
\(858\) 0 0
\(859\) 4.47214i 0.152587i −0.997085 0.0762937i \(-0.975691\pi\)
0.997085 0.0762937i \(-0.0243086\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 54.0000i 1.83818i −0.394046 0.919091i \(-0.628925\pi\)
0.394046 0.919091i \(-0.371075\pi\)
\(864\) 0 0
\(865\) −8.00000 4.00000i −0.272008 0.136004i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −60.0000 −2.03536
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) 13.4164 0.454077
\(874\) 0 0
\(875\) 4.00000 + 22.0000i 0.135225 + 0.743736i
\(876\) 0 0
\(877\) 12.0000i 0.405211i −0.979260 0.202606i \(-0.935059\pi\)
0.979260 0.202606i \(-0.0649409\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.8885i 0.602680i −0.953517 0.301340i \(-0.902566\pi\)
0.953517 0.301340i \(-0.0974340\pi\)
\(882\) 0 0
\(883\) 54.0000i 1.81724i 0.417619 + 0.908622i \(0.362865\pi\)
−0.417619 + 0.908622i \(0.637135\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 44.7214 1.50160 0.750798 0.660532i \(-0.229669\pi\)
0.750798 + 0.660532i \(0.229669\pi\)
\(888\) 0 0
\(889\) 17.8885i 0.599963i
\(890\) 0 0
\(891\) 40.2492i 1.34840i
\(892\) 0 0
\(893\) 40.0000i 1.33855i
\(894\) 0 0
\(895\) 20.0000 40.0000i 0.668526 1.33705i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 20.0000 + 13.4164i 0.667037 + 0.447462i
\(900\) 0 0
\(901\) 17.8885i 0.595954i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 20.0000i 0.332411 0.664822i
\(906\) 0 0
\(907\) −17.8885 −0.593979 −0.296990 0.954881i \(-0.595983\pi\)
−0.296990 + 0.954881i \(0.595983\pi\)
\(908\) 0 0
\(909\) 26.8328i 0.889988i
\(910\) 0 0
\(911\) 4.47214i 0.148168i 0.997252 + 0.0740842i \(0.0236034\pi\)
−0.997252 + 0.0740842i \(0.976397\pi\)
\(912\) 0 0
\(913\) 26.8328 0.888037
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.94427 0.295366
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −13.4164 17.8885i −0.441129 0.588172i
\(926\) 0 0
\(927\) 18.0000i 0.591198i
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 13.4164i 0.439705i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −40.0000 20.0000i −1.30814 0.654070i
\(936\) 0 0
\(937\) 32.0000i 1.04539i 0.852518 + 0.522697i \(0.175074\pi\)
−0.852518 + 0.522697i \(0.824926\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.8885 0.581300 0.290650 0.956830i \(-0.406129\pi\)
0.290650 + 0.956830i \(0.406129\pi\)
\(948\) 0 0
\(949\) 53.6656i 1.74206i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000i 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) 26.8328 + 13.4164i 0.868290 + 0.434145i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 26.8328i 0.866477i
\(960\) 0 0
\(961\) 11.0000 0.354839
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) 0 0
\(965\) 4.47214 8.94427i 0.143963 0.287926i
\(966\) 0 0
\(967\) 44.7214 1.43814 0.719071 0.694937i \(-0.244568\pi\)
0.719071 + 0.694937i \(0.244568\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.3607i 0.717588i −0.933417 0.358794i \(-0.883188\pi\)
0.933417 0.358794i \(-0.116812\pi\)
\(972\) 0 0
\(973\) 40.0000i 1.28234i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.00000i 0.255943i −0.991778 0.127971i \(-0.959153\pi\)
0.991778 0.127971i \(-0.0408466\pi\)
\(978\) 0 0
\(979\) −80.0000 −2.55681
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) 26.8328 0.855834 0.427917 0.903818i \(-0.359248\pi\)
0.427917 + 0.903818i \(0.359248\pi\)
\(984\) 0 0
\(985\) 24.0000 + 12.0000i 0.764704 + 0.382352i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0000 32.0000i 0.507234 1.01447i
\(996\) 0 0
\(997\) 40.2492 1.27471 0.637353 0.770572i \(-0.280029\pi\)
0.637353 + 0.770572i \(0.280029\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.j.b.289.3 4
4.3 odd 2 145.2.d.b.144.2 yes 4
5.4 even 2 inner 2320.2.j.b.289.1 4
12.11 even 2 1305.2.f.h.289.3 4
20.3 even 4 725.2.c.a.376.2 2
20.7 even 4 725.2.c.b.376.1 2
20.19 odd 2 145.2.d.b.144.3 yes 4
29.28 even 2 inner 2320.2.j.b.289.4 4
60.59 even 2 1305.2.f.h.289.2 4
116.115 odd 2 145.2.d.b.144.4 yes 4
145.144 even 2 inner 2320.2.j.b.289.2 4
348.347 even 2 1305.2.f.h.289.1 4
580.347 even 4 725.2.c.b.376.2 2
580.463 even 4 725.2.c.a.376.1 2
580.579 odd 2 145.2.d.b.144.1 4
1740.1739 even 2 1305.2.f.h.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.d.b.144.1 4 580.579 odd 2
145.2.d.b.144.2 yes 4 4.3 odd 2
145.2.d.b.144.3 yes 4 20.19 odd 2
145.2.d.b.144.4 yes 4 116.115 odd 2
725.2.c.a.376.1 2 580.463 even 4
725.2.c.a.376.2 2 20.3 even 4
725.2.c.b.376.1 2 20.7 even 4
725.2.c.b.376.2 2 580.347 even 4
1305.2.f.h.289.1 4 348.347 even 2
1305.2.f.h.289.2 4 60.59 even 2
1305.2.f.h.289.3 4 12.11 even 2
1305.2.f.h.289.4 4 1740.1739 even 2
2320.2.j.b.289.1 4 5.4 even 2 inner
2320.2.j.b.289.2 4 145.144 even 2 inner
2320.2.j.b.289.3 4 1.1 even 1 trivial
2320.2.j.b.289.4 4 29.28 even 2 inner