L(s) = 1 | + (0.987 + 0.156i)2-s + (−0.453 + 0.891i)3-s + (0.951 + 0.309i)4-s + (0.453 + 0.891i)5-s + (−0.587 + 0.809i)6-s + (−1.76 + 0.896i)7-s + (0.891 + 0.453i)8-s + (−0.587 − 0.809i)9-s + (0.309 + 0.951i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (−1.87 + 0.610i)14-s − 1.00·15-s + (0.809 + 0.587i)16-s + (−0.453 − 0.891i)18-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)2-s + (−0.453 + 0.891i)3-s + (0.951 + 0.309i)4-s + (0.453 + 0.891i)5-s + (−0.587 + 0.809i)6-s + (−1.76 + 0.896i)7-s + (0.891 + 0.453i)8-s + (−0.587 − 0.809i)9-s + (0.309 + 0.951i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (−1.87 + 0.610i)14-s − 1.00·15-s + (0.809 + 0.587i)16-s + (−0.453 − 0.891i)18-s + ⋯ |
Λ(s)=(=(1320s/2ΓC(s)L(s)(−0.442−0.896i)Λ(1−s)
Λ(s)=(=(1320s/2ΓC(s)L(s)(−0.442−0.896i)Λ(1−s)
Degree: |
2 |
Conductor: |
1320
= 23⋅3⋅5⋅11
|
Sign: |
−0.442−0.896i
|
Analytic conductor: |
0.658765 |
Root analytic conductor: |
0.811643 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1320(173,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1320, ( :0), −0.442−0.896i)
|
Particular Values
L(21) |
≈ |
1.560165464 |
L(21) |
≈ |
1.560165464 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.987−0.156i)T |
| 3 | 1+(0.453−0.891i)T |
| 5 | 1+(−0.453−0.891i)T |
| 11 | 1+(−0.707+0.707i)T |
good | 7 | 1+(1.76−0.896i)T+(0.587−0.809i)T2 |
| 13 | 1+(0.951+0.309i)T2 |
| 17 | 1+(0.951−0.309i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1−iT2 |
| 29 | 1+(−0.280+0.863i)T+(−0.809−0.587i)T2 |
| 31 | 1+(0.951−0.690i)T+(0.309−0.951i)T2 |
| 37 | 1+(0.587−0.809i)T2 |
| 41 | 1+(−0.809+0.587i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.587−0.809i)T2 |
| 53 | 1+(−1.59−0.253i)T+(0.951+0.309i)T2 |
| 59 | 1+(−0.297−0.0966i)T+(0.809+0.587i)T2 |
| 61 | 1+(0.309+0.951i)T2 |
| 67 | 1+iT2 |
| 71 | 1+(−0.309−0.951i)T2 |
| 73 | 1+(0.809+1.58i)T+(−0.587+0.809i)T2 |
| 79 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 83 | 1+(−0.610+0.0966i)T+(0.951−0.309i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.278−1.76i)T+(−0.951−0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21318972340847034020890940279, −9.437202644754023649675549918229, −8.725948124830310537024524316551, −7.16437776054527644806100217752, −6.30600975392338890198525903251, −6.07067171417993449585737642945, −5.26454574345341886525984975955, −3.83720917819246181384200349883, −3.32015434295935359615211180522, −2.49182309999008282934709298529,
1.05410395787597964012478253207, 2.27446277198320493719835945664, 3.54492206022855051899593080813, 4.44268015443659088186460750946, 5.51505068281514958169530478183, 6.22298217024864011537210189550, 6.91745825198739960847028094300, 7.44073224271043118988215446029, 8.840340843444649151446490123065, 9.805313314455003515468603795635