L(s) = 1 | + (0.5 − 0.866i)4-s − 1.73i·13-s + (−0.499 − 0.866i)16-s + (−0.5 + 0.866i)25-s + (1.5 + 0.866i)31-s + (−0.5 − 0.866i)37-s + 43-s + (−1.49 − 0.866i)52-s + (−1.5 + 0.866i)61-s − 0.999·64-s + (0.5 − 0.866i)67-s + (0.5 + 0.866i)79-s + 1.73i·97-s + (0.499 + 0.866i)100-s + (1.5 − 0.866i)103-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s − 1.73i·13-s + (−0.499 − 0.866i)16-s + (−0.5 + 0.866i)25-s + (1.5 + 0.866i)31-s + (−0.5 − 0.866i)37-s + 43-s + (−1.49 − 0.866i)52-s + (−1.5 + 0.866i)61-s − 0.999·64-s + (0.5 − 0.866i)67-s + (0.5 + 0.866i)79-s + 1.73i·97-s + (0.499 + 0.866i)100-s + (1.5 − 0.866i)103-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.444+0.895i)Λ(1−s)
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.444+0.895i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.444+0.895i
|
Analytic conductor: |
0.660263 |
Root analytic conductor: |
0.812565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(325,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :0), 0.444+0.895i)
|
Particular Values
L(21) |
≈ |
1.174148301 |
L(21) |
≈ |
1.174148301 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(−0.5+0.866i)T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+1.73iT−T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 37 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(−0.5−0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−1.73iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.843553237222732707474108860594, −8.974816365916546114042264734303, −7.953123816083389962894659645922, −7.26190323170567542077391119980, −6.24333928291669579276411309398, −5.57645746564939591781772609965, −4.82221048394423545007869832824, −3.41928177536144544564167779469, −2.44011166590495548838277642670, −1.05989637758594156347961776512,
1.85444917602858520700677709570, 2.81924541317498148269628843430, 4.00715638032429347033310768449, 4.61935737178106725755288828837, 6.13596508737825238239272358710, 6.67264872318306544370824332564, 7.55243301252859911976984732658, 8.309353841976895473163553570025, 9.075637620829755838827725360021, 9.908404490530258951916925184214