L(s) = 1 | + (0.5 − 0.866i)4-s − 1.73i·13-s + (−0.499 − 0.866i)16-s + (−0.5 + 0.866i)25-s + (1.5 + 0.866i)31-s + (−0.5 − 0.866i)37-s + 43-s + (−1.49 − 0.866i)52-s + (−1.5 + 0.866i)61-s − 0.999·64-s + (0.5 − 0.866i)67-s + (0.5 + 0.866i)79-s + 1.73i·97-s + (0.499 + 0.866i)100-s + (1.5 − 0.866i)103-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s − 1.73i·13-s + (−0.499 − 0.866i)16-s + (−0.5 + 0.866i)25-s + (1.5 + 0.866i)31-s + (−0.5 − 0.866i)37-s + 43-s + (−1.49 − 0.866i)52-s + (−1.5 + 0.866i)61-s − 0.999·64-s + (0.5 − 0.866i)67-s + (0.5 + 0.866i)79-s + 1.73i·97-s + (0.499 + 0.866i)100-s + (1.5 − 0.866i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.174148301\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.174148301\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 1.73iT - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.843553237222732707474108860594, −8.974816365916546114042264734303, −7.953123816083389962894659645922, −7.26190323170567542077391119980, −6.24333928291669579276411309398, −5.57645746564939591781772609965, −4.82221048394423545007869832824, −3.41928177536144544564167779469, −2.44011166590495548838277642670, −1.05989637758594156347961776512,
1.85444917602858520700677709570, 2.81924541317498148269628843430, 4.00715638032429347033310768449, 4.61935737178106725755288828837, 6.13596508737825238239272358710, 6.67264872318306544370824332564, 7.55243301252859911976984732658, 8.309353841976895473163553570025, 9.075637620829755838827725360021, 9.908404490530258951916925184214