L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s − 5.19i·11-s + (3.67 − 3.67i)13-s − 1.00·16-s + (−2.12 + 2.12i)17-s + 2i·19-s + (−3.67 − 3.67i)22-s + (2.12 + 2.12i)23-s − 5.19i·26-s − 5.19·29-s − 5·31-s + (−0.707 + 0.707i)32-s + 3i·34-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (−0.250 − 0.250i)8-s − 1.56i·11-s + (1.01 − 1.01i)13-s − 0.250·16-s + (−0.514 + 0.514i)17-s + 0.458i·19-s + (−0.783 − 0.783i)22-s + (0.442 + 0.442i)23-s − 1.01i·26-s − 0.964·29-s − 0.898·31-s + (−0.125 + 0.125i)32-s + 0.514i·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.924928953\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.924928953\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + 5.19iT - 11T^{2} \) |
| 13 | \( 1 + (-3.67 + 3.67i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.12 - 2.12i)T - 17iT^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 + (-2.12 - 2.12i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.19T + 29T^{2} \) |
| 31 | \( 1 + 5T + 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 + 10.3iT - 41T^{2} \) |
| 43 | \( 1 + (-3.67 + 3.67i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.36 + 6.36i)T - 47iT^{2} \) |
| 53 | \( 1 + (8.48 + 8.48i)T + 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (-7.34 - 7.34i)T + 67iT^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (-7.34 + 7.34i)T - 73iT^{2} \) |
| 79 | \( 1 - iT - 79T^{2} \) |
| 83 | \( 1 + (-8.48 - 8.48i)T + 83iT^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + (-7.34 - 7.34i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.277110441320040440214824674661, −8.623767844733135245901156125799, −7.84612751083603661047838127377, −6.65344285338557107792346012807, −5.73236598260454551736354737837, −5.34309895184805718106719920135, −3.67804464933517959546343540395, −3.52706953563382768068521759879, −2.05766479338680668056488943355, −0.67489116149060552623711061002,
1.69167693584895768397947699139, 2.88128404095386189726962634435, 4.24486351913321047497330569111, 4.60747264623717742620514149934, 5.78697010448664637321266142963, 6.69032646073399130716297855500, 7.22682532797175639858678736859, 8.107548349008261409009894857866, 9.278145431351144729795561514799, 9.453657014601553805223068767804