L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.707 + 0.707i)8-s + 5.19i·11-s + (3.67 + 3.67i)13-s − 1.00·16-s + (−2.12 − 2.12i)17-s − 2i·19-s + (−3.67 + 3.67i)22-s + (2.12 − 2.12i)23-s + 5.19i·26-s − 5.19·29-s − 5·31-s + (−0.707 − 0.707i)32-s − 3i·34-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.250 + 0.250i)8-s + 1.56i·11-s + (1.01 + 1.01i)13-s − 0.250·16-s + (−0.514 − 0.514i)17-s − 0.458i·19-s + (−0.783 + 0.783i)22-s + (0.442 − 0.442i)23-s + 1.01i·26-s − 0.964·29-s − 0.898·31-s + (−0.125 − 0.125i)32-s − 0.514i·34-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(−0.525−0.850i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(−0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
−0.525−0.850i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(593,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), −0.525−0.850i)
|
Particular Values
L(1) |
≈ |
1.924928953 |
L(21) |
≈ |
1.924928953 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−7iT2 |
| 11 | 1−5.19iT−11T2 |
| 13 | 1+(−3.67−3.67i)T+13iT2 |
| 17 | 1+(2.12+2.12i)T+17iT2 |
| 19 | 1+2iT−19T2 |
| 23 | 1+(−2.12+2.12i)T−23iT2 |
| 29 | 1+5.19T+29T2 |
| 31 | 1+5T+31T2 |
| 37 | 1−37iT2 |
| 41 | 1−10.3iT−41T2 |
| 43 | 1+(−3.67−3.67i)T+43iT2 |
| 47 | 1+(−6.36−6.36i)T+47iT2 |
| 53 | 1+(8.48−8.48i)T−53iT2 |
| 59 | 1+10.3T+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(−7.34+7.34i)T−67iT2 |
| 71 | 1−10.3iT−71T2 |
| 73 | 1+(−7.34−7.34i)T+73iT2 |
| 79 | 1+iT−79T2 |
| 83 | 1+(−8.48+8.48i)T−83iT2 |
| 89 | 1+10.3T+89T2 |
| 97 | 1+(−7.34+7.34i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.453657014601553805223068767804, −9.278145431351144729795561514799, −8.107548349008261409009894857866, −7.22682532797175639858678736859, −6.69032646073399130716297855500, −5.78697010448664637321266142963, −4.60747264623717742620514149934, −4.24486351913321047497330569111, −2.88128404095386189726962634435, −1.69167693584895768397947699139,
0.67489116149060552623711061002, 2.05766479338680668056488943355, 3.52706953563382768068521759879, 3.67804464933517959546343540395, 5.34309895184805718106719920135, 5.73236598260454551736354737837, 6.65344285338557107792346012807, 7.84612751083603661047838127377, 8.623767844733135245901156125799, 9.277110441320040440214824674661