L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.389 − 0.224i)7-s + 0.999i·8-s + (−2.44 − 4.24i)11-s + (0.389 + 0.224i)13-s + (−0.224 + 0.389i)14-s + (−0.5 − 0.866i)16-s + 4.89i·17-s − 7.44·19-s + (4.24 + 2.44i)22-s + (−2.12 − 1.22i)23-s − 0.449·26-s − 0.449i·28-s + (1.22 + 2.12i)29-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.147 − 0.0849i)7-s + 0.353i·8-s + (−0.738 − 1.27i)11-s + (0.107 + 0.0623i)13-s + (−0.0600 + 0.104i)14-s + (−0.125 − 0.216i)16-s + 1.18i·17-s − 1.70·19-s + (0.904 + 0.522i)22-s + (−0.442 − 0.255i)23-s − 0.0881·26-s − 0.0849i·28-s + (0.227 + 0.393i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.195i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2130683417\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2130683417\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.389 + 0.224i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.44 + 4.24i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.389 - 0.224i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.89iT - 17T^{2} \) |
| 19 | \( 1 + 7.44T + 19T^{2} \) |
| 23 | \( 1 + (2.12 + 1.22i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.22 - 2.12i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.22 - 3.85i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 11.3iT - 37T^{2} \) |
| 41 | \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.20 + 1.27i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (9.43 - 5.44i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3.55iT - 53T^{2} \) |
| 59 | \( 1 + (-2.72 + 4.71i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.301 - 0.174i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.3T + 71T^{2} \) |
| 73 | \( 1 + iT - 73T^{2} \) |
| 79 | \( 1 + (-8.34 - 14.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.71 + 2.72i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + (7.61 - 4.39i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04182254225589312621368954788, −8.917825423181372554618526657774, −8.339490578109850870881137555081, −7.86835728255680159585753695233, −6.56416748692617554562181564673, −6.12498154022965176259003090909, −5.11141767083487073126422444153, −3.99685387688611163999115370024, −2.80411736353517922731003428963, −1.51733003721263135997844622854,
0.10246353154306206935961105424, 1.91121521712688236787892436783, 2.64111953416455343705167776431, 4.05124396753137062726543635823, 4.85561133051351852743234338798, 5.99030135531057856854626751787, 7.03425187799792393197020344952, 7.67200150899748574084827668781, 8.453505232763313032449521991846, 9.373442301791414041863858157950