L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.389 − 0.224i)7-s + 0.999i·8-s + (−2.44 − 4.24i)11-s + (0.389 + 0.224i)13-s + (−0.224 + 0.389i)14-s + (−0.5 − 0.866i)16-s + 4.89i·17-s − 7.44·19-s + (4.24 + 2.44i)22-s + (−2.12 − 1.22i)23-s − 0.449·26-s − 0.449i·28-s + (1.22 + 2.12i)29-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.147 − 0.0849i)7-s + 0.353i·8-s + (−0.738 − 1.27i)11-s + (0.107 + 0.0623i)13-s + (−0.0600 + 0.104i)14-s + (−0.125 − 0.216i)16-s + 1.18i·17-s − 1.70·19-s + (0.904 + 0.522i)22-s + (−0.442 − 0.255i)23-s − 0.0881·26-s − 0.0849i·28-s + (0.227 + 0.393i)29-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(−0.980−0.195i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(−0.980−0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
−0.980−0.195i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), −0.980−0.195i)
|
Particular Values
L(1) |
≈ |
0.2130683417 |
L(21) |
≈ |
0.2130683417 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−0.389+0.224i)T+(3.5−6.06i)T2 |
| 11 | 1+(2.44+4.24i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.389−0.224i)T+(6.5+11.2i)T2 |
| 17 | 1−4.89iT−17T2 |
| 19 | 1+7.44T+19T2 |
| 23 | 1+(2.12+1.22i)T+(11.5+19.9i)T2 |
| 29 | 1+(−1.22−2.12i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.22−3.85i)T+(−15.5−26.8i)T2 |
| 37 | 1−11.3iT−37T2 |
| 41 | 1+(−4.5+7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.20+1.27i)T+(21.5−37.2i)T2 |
| 47 | 1+(9.43−5.44i)T+(23.5−40.7i)T2 |
| 53 | 1−3.55iT−53T2 |
| 59 | 1+(−2.72+4.71i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4+6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.301−0.174i)T+(33.5+58.0i)T2 |
| 71 | 1+13.3T+71T2 |
| 73 | 1+iT−73T2 |
| 79 | 1+(−8.34−14.4i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−4.71+2.72i)T+(41.5−71.8i)T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+(7.61−4.39i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04182254225589312621368954788, −8.917825423181372554618526657774, −8.339490578109850870881137555081, −7.86835728255680159585753695233, −6.56416748692617554562181564673, −6.12498154022965176259003090909, −5.11141767083487073126422444153, −3.99685387688611163999115370024, −2.80411736353517922731003428963, −1.51733003721263135997844622854,
0.10246353154306206935961105424, 1.91121521712688236787892436783, 2.64111953416455343705167776431, 4.05124396753137062726543635823, 4.85561133051351852743234338798, 5.99030135531057856854626751787, 7.03425187799792393197020344952, 7.67200150899748574084827668781, 8.453505232763313032449521991846, 9.373442301791414041863858157950