Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1350,2,Mod(199,1350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1350.199");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1350.j (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 450) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
199.1 |
|
−0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | −3.85337 | + | 2.22474i | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
199.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 0.389270 | − | 0.224745i | 1.00000i | 0 | 0 | |||||||||||||||||||||||||||||||||||||
199.3 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | −0.389270 | + | 0.224745i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
199.4 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 3.85337 | − | 2.22474i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1099.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | −3.85337 | − | 2.22474i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1099.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 0.389270 | + | 0.224745i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1099.3 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | −0.389270 | − | 0.224745i | 1.00000i | 0 | 0 | |||||||||||||||||||||||||||||||||||||
1099.4 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 3.85337 | + | 2.22474i | 1.00000i | 0 | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1350.2.j.g | 8 | |
3.b | odd | 2 | 1 | 450.2.j.f | 8 | ||
5.b | even | 2 | 1 | inner | 1350.2.j.g | 8 | |
5.c | odd | 4 | 1 | 1350.2.e.k | 4 | ||
5.c | odd | 4 | 1 | 1350.2.e.n | 4 | ||
9.c | even | 3 | 1 | inner | 1350.2.j.g | 8 | |
9.c | even | 3 | 1 | 4050.2.c.w | 4 | ||
9.d | odd | 6 | 1 | 450.2.j.f | 8 | ||
9.d | odd | 6 | 1 | 4050.2.c.y | 4 | ||
15.d | odd | 2 | 1 | 450.2.j.f | 8 | ||
15.e | even | 4 | 1 | 450.2.e.l | ✓ | 4 | |
15.e | even | 4 | 1 | 450.2.e.m | yes | 4 | |
45.h | odd | 6 | 1 | 450.2.j.f | 8 | ||
45.h | odd | 6 | 1 | 4050.2.c.y | 4 | ||
45.j | even | 6 | 1 | inner | 1350.2.j.g | 8 | |
45.j | even | 6 | 1 | 4050.2.c.w | 4 | ||
45.k | odd | 12 | 1 | 1350.2.e.k | 4 | ||
45.k | odd | 12 | 1 | 1350.2.e.n | 4 | ||
45.k | odd | 12 | 1 | 4050.2.a.bl | 2 | ||
45.k | odd | 12 | 1 | 4050.2.a.by | 2 | ||
45.l | even | 12 | 1 | 450.2.e.l | ✓ | 4 | |
45.l | even | 12 | 1 | 450.2.e.m | yes | 4 | |
45.l | even | 12 | 1 | 4050.2.a.br | 2 | ||
45.l | even | 12 | 1 | 4050.2.a.bu | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
450.2.e.l | ✓ | 4 | 15.e | even | 4 | 1 | |
450.2.e.l | ✓ | 4 | 45.l | even | 12 | 1 | |
450.2.e.m | yes | 4 | 15.e | even | 4 | 1 | |
450.2.e.m | yes | 4 | 45.l | even | 12 | 1 | |
450.2.j.f | 8 | 3.b | odd | 2 | 1 | ||
450.2.j.f | 8 | 9.d | odd | 6 | 1 | ||
450.2.j.f | 8 | 15.d | odd | 2 | 1 | ||
450.2.j.f | 8 | 45.h | odd | 6 | 1 | ||
1350.2.e.k | 4 | 5.c | odd | 4 | 1 | ||
1350.2.e.k | 4 | 45.k | odd | 12 | 1 | ||
1350.2.e.n | 4 | 5.c | odd | 4 | 1 | ||
1350.2.e.n | 4 | 45.k | odd | 12 | 1 | ||
1350.2.j.g | 8 | 1.a | even | 1 | 1 | trivial | |
1350.2.j.g | 8 | 5.b | even | 2 | 1 | inner | |
1350.2.j.g | 8 | 9.c | even | 3 | 1 | inner | |
1350.2.j.g | 8 | 45.j | even | 6 | 1 | inner | |
4050.2.a.bl | 2 | 45.k | odd | 12 | 1 | ||
4050.2.a.br | 2 | 45.l | even | 12 | 1 | ||
4050.2.a.bu | 2 | 45.l | even | 12 | 1 | ||
4050.2.a.by | 2 | 45.k | odd | 12 | 1 | ||
4050.2.c.w | 4 | 9.c | even | 3 | 1 | ||
4050.2.c.w | 4 | 45.j | even | 6 | 1 | ||
4050.2.c.y | 4 | 9.d | odd | 6 | 1 | ||
4050.2.c.y | 4 | 45.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|