Properties

Label 1350.2.j.g
Level 13501350
Weight 22
Character orbit 1350.j
Analytic conductor 10.78010.780
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(199,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1350=23352 1350 = 2 \cdot 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1350.j (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.779804272910.7798042729
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2232 2^{2}\cdot 3^{2}
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β1)q2+(β2+1)q4+(β7β4+2β1)q7+β3q8+2β5q11+(β42β1)q13+(β6β52β2+2)q14++(4β7+3β3)q98+O(q100) q + (\beta_{3} - \beta_1) q^{2} + ( - \beta_{2} + 1) q^{4} + (\beta_{7} - \beta_{4} + \cdots - 2 \beta_1) q^{7} + \beta_{3} q^{8} + 2 \beta_{5} q^{11} + ( - \beta_{4} - 2 \beta_1) q^{13} + (\beta_{6} - \beta_{5} - 2 \beta_{2} + 2) q^{14}+ \cdots + (4 \beta_{7} + 3 \beta_{3}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q4+8q144q1640q19+16q268q31+36q41+12q498q56+12q5932q618q6448q7116q7420q76+8q7920q8672q89++24q94+O(q100) 8 q + 4 q^{4} + 8 q^{14} - 4 q^{16} - 40 q^{19} + 16 q^{26} - 8 q^{31} + 36 q^{41} + 12 q^{49} - 8 q^{56} + 12 q^{59} - 32 q^{61} - 8 q^{64} - 48 q^{71} - 16 q^{74} - 20 q^{76} + 8 q^{79} - 20 q^{86} - 72 q^{89}+ \cdots + 24 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ242 \zeta_{24}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ244 \zeta_{24}^{4} Copy content Toggle raw display
β3\beta_{3}== ζ246 \zeta_{24}^{6} Copy content Toggle raw display
β4\beta_{4}== ζ247ζ245+ζ243+2ζ24 \zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24}^{3} + 2\zeta_{24} Copy content Toggle raw display
β5\beta_{5}== ζ247+2ζ245+2ζ243ζ24 -\zeta_{24}^{7} + 2\zeta_{24}^{5} + 2\zeta_{24}^{3} - \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== 2ζ247+ζ245+ζ243+ζ24 -2\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} Copy content Toggle raw display
β7\beta_{7}== 2ζ247+ζ245ζ243+ζ24 2\zeta_{24}^{7} + \zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} Copy content Toggle raw display
ζ24\zeta_{24}== (β7+2β6β5+β4)/6 ( \beta_{7} + 2\beta_{6} - \beta_{5} + \beta_{4} ) / 6 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== (β7β6+2β5+2β4)/6 ( -\beta_{7} - \beta_{6} + 2\beta_{5} + 2\beta_{4} ) / 6 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== β2 \beta_{2} Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (2β7+β6+β5β4)/6 ( 2\beta_{7} + \beta_{6} + \beta_{5} - \beta_{4} ) / 6 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== β3 \beta_{3} Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β72β6+β5+β4)/6 ( \beta_{7} - 2\beta_{6} + \beta_{5} + \beta_{4} ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1350Z)×\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times.

nn 10011001 10271027
χ(n)\chi(n) 1+β2-1 + \beta_{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
199.1
0.965926 + 0.258819i
−0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 + 0.965926i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 −3.85337 + 2.22474i 1.00000i 0 0
199.2 −0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 0.389270 0.224745i 1.00000i 0 0
199.3 0.866025 0.500000i 0 0.500000 0.866025i 0 0 −0.389270 + 0.224745i 1.00000i 0 0
199.4 0.866025 0.500000i 0 0.500000 0.866025i 0 0 3.85337 2.22474i 1.00000i 0 0
1099.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 −3.85337 2.22474i 1.00000i 0 0
1099.2 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 0.389270 + 0.224745i 1.00000i 0 0
1099.3 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 −0.389270 0.224745i 1.00000i 0 0
1099.4 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 3.85337 + 2.22474i 1.00000i 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.2.j.g 8
3.b odd 2 1 450.2.j.f 8
5.b even 2 1 inner 1350.2.j.g 8
5.c odd 4 1 1350.2.e.k 4
5.c odd 4 1 1350.2.e.n 4
9.c even 3 1 inner 1350.2.j.g 8
9.c even 3 1 4050.2.c.w 4
9.d odd 6 1 450.2.j.f 8
9.d odd 6 1 4050.2.c.y 4
15.d odd 2 1 450.2.j.f 8
15.e even 4 1 450.2.e.l 4
15.e even 4 1 450.2.e.m yes 4
45.h odd 6 1 450.2.j.f 8
45.h odd 6 1 4050.2.c.y 4
45.j even 6 1 inner 1350.2.j.g 8
45.j even 6 1 4050.2.c.w 4
45.k odd 12 1 1350.2.e.k 4
45.k odd 12 1 1350.2.e.n 4
45.k odd 12 1 4050.2.a.bl 2
45.k odd 12 1 4050.2.a.by 2
45.l even 12 1 450.2.e.l 4
45.l even 12 1 450.2.e.m yes 4
45.l even 12 1 4050.2.a.br 2
45.l even 12 1 4050.2.a.bu 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
450.2.e.l 4 15.e even 4 1
450.2.e.l 4 45.l even 12 1
450.2.e.m yes 4 15.e even 4 1
450.2.e.m yes 4 45.l even 12 1
450.2.j.f 8 3.b odd 2 1
450.2.j.f 8 9.d odd 6 1
450.2.j.f 8 15.d odd 2 1
450.2.j.f 8 45.h odd 6 1
1350.2.e.k 4 5.c odd 4 1
1350.2.e.k 4 45.k odd 12 1
1350.2.e.n 4 5.c odd 4 1
1350.2.e.n 4 45.k odd 12 1
1350.2.j.g 8 1.a even 1 1 trivial
1350.2.j.g 8 5.b even 2 1 inner
1350.2.j.g 8 9.c even 3 1 inner
1350.2.j.g 8 45.j even 6 1 inner
4050.2.a.bl 2 45.k odd 12 1
4050.2.a.br 2 45.l even 12 1
4050.2.a.bu 2 45.l even 12 1
4050.2.a.by 2 45.k odd 12 1
4050.2.c.w 4 9.c even 3 1
4050.2.c.w 4 45.j even 6 1
4050.2.c.y 4 9.d odd 6 1
4050.2.c.y 4 45.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1350,[χ])S_{2}^{\mathrm{new}}(1350, [\chi]):

T7820T76+396T7480T72+16 T_{7}^{8} - 20T_{7}^{6} + 396T_{7}^{4} - 80T_{7}^{2} + 16 Copy content Toggle raw display
T114+24T112+576 T_{11}^{4} + 24T_{11}^{2} + 576 Copy content Toggle raw display
T192+10T19+19 T_{19}^{2} + 10T_{19} + 19 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T820T6++16 T^{8} - 20 T^{6} + \cdots + 16 Copy content Toggle raw display
1111 (T4+24T2+576)2 (T^{4} + 24 T^{2} + 576)^{2} Copy content Toggle raw display
1313 T820T6++16 T^{8} - 20 T^{6} + \cdots + 16 Copy content Toggle raw display
1717 (T2+24)4 (T^{2} + 24)^{4} Copy content Toggle raw display
1919 (T2+10T+19)4 (T^{2} + 10 T + 19)^{4} Copy content Toggle raw display
2323 (T46T2+36)2 (T^{4} - 6 T^{2} + 36)^{2} Copy content Toggle raw display
2929 (T4+6T2+36)2 (T^{4} + 6 T^{2} + 36)^{2} Copy content Toggle raw display
3131 (T4+4T3+18T2++4)2 (T^{4} + 4 T^{3} + 18 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
3737 (T4+140T2+1444)2 (T^{4} + 140 T^{2} + 1444)^{2} Copy content Toggle raw display
4141 (T29T+81)4 (T^{2} - 9 T + 81)^{4} Copy content Toggle raw display
4343 T862T6++130321 T^{8} - 62 T^{6} + \cdots + 130321 Copy content Toggle raw display
4747 T8120T6++20736 T^{8} - 120 T^{6} + \cdots + 20736 Copy content Toggle raw display
5353 (T4+84T2+900)2 (T^{4} + 84 T^{2} + 900)^{2} Copy content Toggle raw display
5959 (T46T3+33T2++9)2 (T^{4} - 6 T^{3} + 33 T^{2} + \cdots + 9)^{2} Copy content Toggle raw display
6161 (T2+8T+64)4 (T^{2} + 8 T + 64)^{4} Copy content Toggle raw display
6767 T8206T6++625 T^{8} - 206 T^{6} + \cdots + 625 Copy content Toggle raw display
7171 (T2+12T18)4 (T^{2} + 12 T - 18)^{4} Copy content Toggle raw display
7373 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
7979 (T44T3++44944)2 (T^{4} - 4 T^{3} + \cdots + 44944)^{2} Copy content Toggle raw display
8383 T830T6++81 T^{8} - 30 T^{6} + \cdots + 81 Copy content Toggle raw display
8989 (T+9)8 (T + 9)^{8} Copy content Toggle raw display
9797 T8194T6++81450625 T^{8} - 194 T^{6} + \cdots + 81450625 Copy content Toggle raw display
show more
show less