Properties

Label 1350.2.j.g
Level $1350$
Weight $2$
Character orbit 1350.j
Analytic conductor $10.780$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(199,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1) q^{2} + ( - \beta_{2} + 1) q^{4} + (\beta_{7} - \beta_{4} + \cdots - 2 \beta_1) q^{7}+ \cdots + \beta_{3} q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - \beta_1) q^{2} + ( - \beta_{2} + 1) q^{4} + (\beta_{7} - \beta_{4} + \cdots - 2 \beta_1) q^{7}+ \cdots + (4 \beta_{7} + 3 \beta_{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{4} + 8 q^{14} - 4 q^{16} - 40 q^{19} + 16 q^{26} - 8 q^{31} + 36 q^{41} + 12 q^{49} - 8 q^{56} + 12 q^{59} - 32 q^{61} - 8 q^{64} - 48 q^{71} - 16 q^{74} - 20 q^{76} + 8 q^{79} - 20 q^{86} - 72 q^{89} + 80 q^{91} + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24}^{3} + 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{7} + 2\zeta_{24}^{5} + 2\zeta_{24}^{3} - \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\zeta_{24}^{7} + \zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} + 2\beta_{6} - \beta_{5} + \beta_{4} ) / 6 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( -\beta_{7} - \beta_{6} + 2\beta_{5} + 2\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( 2\beta_{7} + \beta_{6} + \beta_{5} - \beta_{4} ) / 6 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( \beta_{7} - 2\beta_{6} + \beta_{5} + \beta_{4} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1 + \beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
0.965926 + 0.258819i
−0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 + 0.965926i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 −3.85337 + 2.22474i 1.00000i 0 0
199.2 −0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 0.389270 0.224745i 1.00000i 0 0
199.3 0.866025 0.500000i 0 0.500000 0.866025i 0 0 −0.389270 + 0.224745i 1.00000i 0 0
199.4 0.866025 0.500000i 0 0.500000 0.866025i 0 0 3.85337 2.22474i 1.00000i 0 0
1099.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 −3.85337 2.22474i 1.00000i 0 0
1099.2 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 0.389270 + 0.224745i 1.00000i 0 0
1099.3 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 −0.389270 0.224745i 1.00000i 0 0
1099.4 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 3.85337 + 2.22474i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.2.j.g 8
3.b odd 2 1 450.2.j.f 8
5.b even 2 1 inner 1350.2.j.g 8
5.c odd 4 1 1350.2.e.k 4
5.c odd 4 1 1350.2.e.n 4
9.c even 3 1 inner 1350.2.j.g 8
9.c even 3 1 4050.2.c.w 4
9.d odd 6 1 450.2.j.f 8
9.d odd 6 1 4050.2.c.y 4
15.d odd 2 1 450.2.j.f 8
15.e even 4 1 450.2.e.l 4
15.e even 4 1 450.2.e.m yes 4
45.h odd 6 1 450.2.j.f 8
45.h odd 6 1 4050.2.c.y 4
45.j even 6 1 inner 1350.2.j.g 8
45.j even 6 1 4050.2.c.w 4
45.k odd 12 1 1350.2.e.k 4
45.k odd 12 1 1350.2.e.n 4
45.k odd 12 1 4050.2.a.bl 2
45.k odd 12 1 4050.2.a.by 2
45.l even 12 1 450.2.e.l 4
45.l even 12 1 450.2.e.m yes 4
45.l even 12 1 4050.2.a.br 2
45.l even 12 1 4050.2.a.bu 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
450.2.e.l 4 15.e even 4 1
450.2.e.l 4 45.l even 12 1
450.2.e.m yes 4 15.e even 4 1
450.2.e.m yes 4 45.l even 12 1
450.2.j.f 8 3.b odd 2 1
450.2.j.f 8 9.d odd 6 1
450.2.j.f 8 15.d odd 2 1
450.2.j.f 8 45.h odd 6 1
1350.2.e.k 4 5.c odd 4 1
1350.2.e.k 4 45.k odd 12 1
1350.2.e.n 4 5.c odd 4 1
1350.2.e.n 4 45.k odd 12 1
1350.2.j.g 8 1.a even 1 1 trivial
1350.2.j.g 8 5.b even 2 1 inner
1350.2.j.g 8 9.c even 3 1 inner
1350.2.j.g 8 45.j even 6 1 inner
4050.2.a.bl 2 45.k odd 12 1
4050.2.a.br 2 45.l even 12 1
4050.2.a.bu 2 45.l even 12 1
4050.2.a.by 2 45.k odd 12 1
4050.2.c.w 4 9.c even 3 1
4050.2.c.w 4 45.j even 6 1
4050.2.c.y 4 9.d odd 6 1
4050.2.c.y 4 45.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1350, [\chi])\):

\( T_{7}^{8} - 20T_{7}^{6} + 396T_{7}^{4} - 80T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{4} + 24T_{11}^{2} + 576 \) Copy content Toggle raw display
\( T_{19}^{2} + 10T_{19} + 19 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 20 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( (T^{4} + 24 T^{2} + 576)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} - 20 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( (T^{2} + 24)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 10 T + 19)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 6 T^{2} + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 6 T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 4 T^{3} + 18 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 140 T^{2} + 1444)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 9 T + 81)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} - 62 T^{6} + \cdots + 130321 \) Copy content Toggle raw display
$47$ \( T^{8} - 120 T^{6} + \cdots + 20736 \) Copy content Toggle raw display
$53$ \( (T^{4} + 84 T^{2} + 900)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 6 T^{3} + 33 T^{2} + \cdots + 9)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T + 64)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} - 206 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$71$ \( (T^{2} + 12 T - 18)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 4 T^{3} + \cdots + 44944)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - 30 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$89$ \( (T + 9)^{8} \) Copy content Toggle raw display
$97$ \( T^{8} - 194 T^{6} + \cdots + 81450625 \) Copy content Toggle raw display
show more
show less