Properties

Label 2-1350-45.34-c1-0-16
Degree 22
Conductor 13501350
Sign 0.980+0.195i-0.980 + 0.195i
Analytic cond. 10.779810.7798
Root an. cond. 3.283263.28326
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (0.389 + 0.224i)7-s − 0.999i·8-s + (−2.44 + 4.24i)11-s + (0.389 − 0.224i)13-s + (−0.224 − 0.389i)14-s + (−0.5 + 0.866i)16-s − 4.89i·17-s − 7.44·19-s + (4.24 − 2.44i)22-s + (−2.12 + 1.22i)23-s − 0.449·26-s + 0.449i·28-s + (1.22 − 2.12i)29-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.147 + 0.0849i)7-s − 0.353i·8-s + (−0.738 + 1.27i)11-s + (0.107 − 0.0623i)13-s + (−0.0600 − 0.104i)14-s + (−0.125 + 0.216i)16-s − 1.18i·17-s − 1.70·19-s + (0.904 − 0.522i)22-s + (−0.442 + 0.255i)23-s − 0.0881·26-s + 0.0849i·28-s + (0.227 − 0.393i)29-s + ⋯

Functional equation

Λ(s)=(1350s/2ΓC(s)L(s)=((0.980+0.195i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.195i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1350s/2ΓC(s+1/2)L(s)=((0.980+0.195i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 13501350    =    233522 \cdot 3^{3} \cdot 5^{2}
Sign: 0.980+0.195i-0.980 + 0.195i
Analytic conductor: 10.779810.7798
Root analytic conductor: 3.283263.28326
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1350(1099,)\chi_{1350} (1099, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1350, ( :1/2), 0.980+0.195i)(2,\ 1350,\ (\ :1/2),\ -0.980 + 0.195i)

Particular Values

L(1)L(1) \approx 0.21306834170.2130683417
L(12)L(\frac12) \approx 0.21306834170.2130683417
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
3 1 1
5 1 1
good7 1+(0.3890.224i)T+(3.5+6.06i)T2 1 + (-0.389 - 0.224i)T + (3.5 + 6.06i)T^{2}
11 1+(2.444.24i)T+(5.59.52i)T2 1 + (2.44 - 4.24i)T + (-5.5 - 9.52i)T^{2}
13 1+(0.389+0.224i)T+(6.511.2i)T2 1 + (-0.389 + 0.224i)T + (6.5 - 11.2i)T^{2}
17 1+4.89iT17T2 1 + 4.89iT - 17T^{2}
19 1+7.44T+19T2 1 + 7.44T + 19T^{2}
23 1+(2.121.22i)T+(11.519.9i)T2 1 + (2.12 - 1.22i)T + (11.5 - 19.9i)T^{2}
29 1+(1.22+2.12i)T+(14.525.1i)T2 1 + (-1.22 + 2.12i)T + (-14.5 - 25.1i)T^{2}
31 1+(2.22+3.85i)T+(15.5+26.8i)T2 1 + (2.22 + 3.85i)T + (-15.5 + 26.8i)T^{2}
37 1+11.3iT37T2 1 + 11.3iT - 37T^{2}
41 1+(4.57.79i)T+(20.5+35.5i)T2 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2}
43 1+(2.201.27i)T+(21.5+37.2i)T2 1 + (-2.20 - 1.27i)T + (21.5 + 37.2i)T^{2}
47 1+(9.43+5.44i)T+(23.5+40.7i)T2 1 + (9.43 + 5.44i)T + (23.5 + 40.7i)T^{2}
53 1+3.55iT53T2 1 + 3.55iT - 53T^{2}
59 1+(2.724.71i)T+(29.5+51.0i)T2 1 + (-2.72 - 4.71i)T + (-29.5 + 51.0i)T^{2}
61 1+(46.92i)T+(30.552.8i)T2 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.301+0.174i)T+(33.558.0i)T2 1 + (-0.301 + 0.174i)T + (33.5 - 58.0i)T^{2}
71 1+13.3T+71T2 1 + 13.3T + 71T^{2}
73 1iT73T2 1 - iT - 73T^{2}
79 1+(8.34+14.4i)T+(39.568.4i)T2 1 + (-8.34 + 14.4i)T + (-39.5 - 68.4i)T^{2}
83 1+(4.712.72i)T+(41.5+71.8i)T2 1 + (-4.71 - 2.72i)T + (41.5 + 71.8i)T^{2}
89 1+9T+89T2 1 + 9T + 89T^{2}
97 1+(7.61+4.39i)T+(48.5+84.0i)T2 1 + (7.61 + 4.39i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.373442301791414041863858157950, −8.453505232763313032449521991846, −7.67200150899748574084827668781, −7.03425187799792393197020344952, −5.99030135531057856854626751787, −4.85561133051351852743234338798, −4.05124396753137062726543635823, −2.64111953416455343705167776431, −1.91121521712688236787892436783, −0.10246353154306206935961105424, 1.51733003721263135997844622854, 2.80411736353517922731003428963, 3.99685387688611163999115370024, 5.11141767083487073126422444153, 6.12498154022965176259003090909, 6.56416748692617554562181564673, 7.86835728255680159585753695233, 8.339490578109850870881137555081, 8.917825423181372554618526657774, 10.04182254225589312621368954788

Graph of the ZZ-function along the critical line