L(s) = 1 | + 2-s + 4-s + 1.09·5-s + 7-s + 8-s + 1.09·10-s + 11-s + 6.80·13-s + 14-s + 16-s + 1.09·17-s − 3.89·19-s + 1.09·20-s + 22-s − 6.99·23-s − 3.80·25-s + 6.80·26-s + 28-s + 4.80·29-s − 1.27·31-s + 32-s + 1.09·34-s + 1.09·35-s + 4.18·37-s − 3.89·38-s + 1.09·40-s − 1.09·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 0.488·5-s + 0.377·7-s + 0.353·8-s + 0.345·10-s + 0.301·11-s + 1.88·13-s + 0.267·14-s + 0.250·16-s + 0.264·17-s − 0.894·19-s + 0.244·20-s + 0.213·22-s − 1.45·23-s − 0.761·25-s + 1.33·26-s + 0.188·28-s + 0.892·29-s − 0.229·31-s + 0.176·32-s + 0.187·34-s + 0.184·35-s + 0.687·37-s − 0.632·38-s + 0.172·40-s − 0.170·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.194887564\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.194887564\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 - 1.09T + 5T^{2} \) |
| 13 | \( 1 - 6.80T + 13T^{2} \) |
| 17 | \( 1 - 1.09T + 17T^{2} \) |
| 19 | \( 1 + 3.89T + 19T^{2} \) |
| 23 | \( 1 + 6.99T + 23T^{2} \) |
| 29 | \( 1 - 4.80T + 29T^{2} \) |
| 31 | \( 1 + 1.27T + 31T^{2} \) |
| 37 | \( 1 - 4.18T + 37T^{2} \) |
| 41 | \( 1 + 1.09T + 41T^{2} \) |
| 43 | \( 1 - 10.6T + 43T^{2} \) |
| 47 | \( 1 + 9.71T + 47T^{2} \) |
| 53 | \( 1 - 3.81T + 53T^{2} \) |
| 59 | \( 1 - 11.7T + 59T^{2} \) |
| 61 | \( 1 - 11.1T + 61T^{2} \) |
| 67 | \( 1 - 8.99T + 67T^{2} \) |
| 71 | \( 1 + 9.17T + 71T^{2} \) |
| 73 | \( 1 + 5.09T + 73T^{2} \) |
| 79 | \( 1 + 4.99T + 79T^{2} \) |
| 83 | \( 1 + 7.09T + 83T^{2} \) |
| 89 | \( 1 + 12.9T + 89T^{2} \) |
| 97 | \( 1 + 7.61T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.717979508120248306757582292885, −8.552777985617149827046325058896, −8.111583538292374115460263718703, −6.86783298906984883531605130672, −6.06133985051057111849455336419, −5.62572784863285190930442472674, −4.28350688314488872518318196562, −3.75698826294922420259469282777, −2.39503063058201151847913837817, −1.35060704710633302988938480794,
1.35060704710633302988938480794, 2.39503063058201151847913837817, 3.75698826294922420259469282777, 4.28350688314488872518318196562, 5.62572784863285190930442472674, 6.06133985051057111849455336419, 6.86783298906984883531605130672, 8.111583538292374115460263718703, 8.552777985617149827046325058896, 9.717979508120248306757582292885