Properties

Label 2-13e2-1.1-c1-0-7
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $1.34947$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.801·2-s − 2.24·3-s − 1.35·4-s + 0.246·5-s − 1.80·6-s − 2.35·7-s − 2.69·8-s + 2.04·9-s + 0.198·10-s − 4.24·11-s + 3.04·12-s − 1.89·14-s − 0.554·15-s + 0.554·16-s + 2.15·17-s + 1.64·18-s − 0.0881·19-s − 0.335·20-s + 5.29·21-s − 3.40·22-s + 1.49·23-s + 6.04·24-s − 4.93·25-s + 2.13·27-s + 3.19·28-s + 4.63·29-s − 0.445·30-s + ⋯
L(s)  = 1  + 0.567·2-s − 1.29·3-s − 0.678·4-s + 0.110·5-s − 0.735·6-s − 0.890·7-s − 0.951·8-s + 0.682·9-s + 0.0626·10-s − 1.28·11-s + 0.880·12-s − 0.505·14-s − 0.143·15-s + 0.138·16-s + 0.523·17-s + 0.387·18-s − 0.0202·19-s − 0.0749·20-s + 1.15·21-s − 0.726·22-s + 0.311·23-s + 1.23·24-s − 0.987·25-s + 0.411·27-s + 0.604·28-s + 0.859·29-s − 0.0812·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(1.34947\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 0.801T + 2T^{2} \)
3 \( 1 + 2.24T + 3T^{2} \)
5 \( 1 - 0.246T + 5T^{2} \)
7 \( 1 + 2.35T + 7T^{2} \)
11 \( 1 + 4.24T + 11T^{2} \)
17 \( 1 - 2.15T + 17T^{2} \)
19 \( 1 + 0.0881T + 19T^{2} \)
23 \( 1 - 1.49T + 23T^{2} \)
29 \( 1 - 4.63T + 29T^{2} \)
31 \( 1 + 6.63T + 31T^{2} \)
37 \( 1 - 5.69T + 37T^{2} \)
41 \( 1 + 11.5T + 41T^{2} \)
43 \( 1 + 0.295T + 43T^{2} \)
47 \( 1 + 7.35T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + 6.78T + 59T^{2} \)
61 \( 1 - 3.47T + 61T^{2} \)
67 \( 1 - 7.67T + 67T^{2} \)
71 \( 1 + 8.66T + 71T^{2} \)
73 \( 1 - 6.73T + 73T^{2} \)
79 \( 1 - 9.97T + 79T^{2} \)
83 \( 1 - 1.60T + 83T^{2} \)
89 \( 1 + 2.88T + 89T^{2} \)
97 \( 1 + 8.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.50801596828543138613328770364, −11.46927784487043750239685597641, −10.33462678075215431562594971829, −9.550834590137455943765683279258, −8.082682657034107570213469756967, −6.52528380006161753471808993267, −5.61737740930925729217237522524, −4.84691216565701289778282224049, −3.25431298166008658878705217774, 0, 3.25431298166008658878705217774, 4.84691216565701289778282224049, 5.61737740930925729217237522524, 6.52528380006161753471808993267, 8.082682657034107570213469756967, 9.550834590137455943765683279258, 10.33462678075215431562594971829, 11.46927784487043750239685597641, 12.50801596828543138613328770364

Graph of the $Z$-function along the critical line