Properties

Label 169.2.a.b
Level $169$
Weight $2$
Character orbit 169.a
Self dual yes
Analytic conductor $1.349$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.34947179416\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + (\beta_{2} - \beta_1) q^{3} + (\beta_{2} + \beta_1) q^{4} + ( - \beta_{2} + \beta_1 - 2) q^{5} + \beta_{2} q^{6} + (\beta_{2} + \beta_1 - 1) q^{7} + (\beta_{2} - 2 \beta_1) q^{8}+ \cdots + (6 \beta_{2} - 2 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 2 q^{3} - 4 q^{5} - q^{6} - 3 q^{7} - 3 q^{8} - 3 q^{9} + 5 q^{10} - 8 q^{11} - 5 q^{14} - 2 q^{15} + 2 q^{16} - 2 q^{17} + 9 q^{18} - 4 q^{19} + 2 q^{21} + 3 q^{22} - 5 q^{23} + 9 q^{24}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
−2.24698 −0.554958 3.04892 −1.44504 1.24698 2.04892 −2.35690 −2.69202 3.24698
1.2 −0.554958 0.801938 −1.69202 −2.80194 −0.445042 −2.69202 2.04892 −2.35690 1.55496
1.3 0.801938 −2.24698 −1.35690 0.246980 −1.80194 −2.35690 −2.69202 2.04892 0.198062
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.2.a.b 3
3.b odd 2 1 1521.2.a.r 3
4.b odd 2 1 2704.2.a.z 3
5.b even 2 1 4225.2.a.bg 3
7.b odd 2 1 8281.2.a.bf 3
13.b even 2 1 169.2.a.c yes 3
13.c even 3 2 169.2.c.c 6
13.d odd 4 2 169.2.b.b 6
13.e even 6 2 169.2.c.b 6
13.f odd 12 4 169.2.e.b 12
39.d odd 2 1 1521.2.a.o 3
39.f even 4 2 1521.2.b.l 6
52.b odd 2 1 2704.2.a.ba 3
52.f even 4 2 2704.2.f.o 6
65.d even 2 1 4225.2.a.bb 3
91.b odd 2 1 8281.2.a.bj 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.2.a.b 3 1.a even 1 1 trivial
169.2.a.c yes 3 13.b even 2 1
169.2.b.b 6 13.d odd 4 2
169.2.c.b 6 13.e even 6 2
169.2.c.c 6 13.c even 3 2
169.2.e.b 12 13.f odd 12 4
1521.2.a.o 3 39.d odd 2 1
1521.2.a.r 3 3.b odd 2 1
1521.2.b.l 6 39.f even 4 2
2704.2.a.z 3 4.b odd 2 1
2704.2.a.ba 3 52.b odd 2 1
2704.2.f.o 6 52.f even 4 2
4225.2.a.bb 3 65.d even 2 1
4225.2.a.bg 3 5.b even 2 1
8281.2.a.bf 3 7.b odd 2 1
8281.2.a.bj 3 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 2T_{2}^{2} - T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(169))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$5$ \( T^{3} + 4 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{3} + 3 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$23$ \( T^{3} + 5T^{2} - T - 13 \) Copy content Toggle raw display
$29$ \( T^{3} + T^{2} + \cdots + 83 \) Copy content Toggle raw display
$31$ \( T^{3} + 5 T^{2} + \cdots - 167 \) Copy content Toggle raw display
$37$ \( T^{3} - 12 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$41$ \( T^{3} + 7 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$43$ \( T^{3} - 13 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$47$ \( T^{3} + 18 T^{2} + \cdots + 167 \) Copy content Toggle raw display
$53$ \( T^{3} - T^{2} + \cdots + 337 \) Copy content Toggle raw display
$59$ \( T^{3} + 19 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{3} - 4 T^{2} + \cdots + 239 \) Copy content Toggle raw display
$67$ \( T^{3} + T^{2} + \cdots + 41 \) Copy content Toggle raw display
$71$ \( T^{3} + 27 T^{2} + \cdots + 547 \) Copy content Toggle raw display
$73$ \( T^{3} - 9 T^{2} + \cdots + 911 \) Copy content Toggle raw display
$79$ \( T^{3} + 5 T^{2} + \cdots + 127 \) Copy content Toggle raw display
$83$ \( T^{3} + 7 T^{2} + \cdots + 203 \) Copy content Toggle raw display
$89$ \( T^{3} + 11 T^{2} + \cdots - 281 \) Copy content Toggle raw display
$97$ \( T^{3} - 7 T^{2} + \cdots + 301 \) Copy content Toggle raw display
show more
show less