Properties

Label 169.2.c.b
Level 169169
Weight 22
Character orbit 169.c
Analytic conductor 1.3491.349
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(22,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 169.c (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.349471794161.34947179416
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+3x4+5x22x+1 x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5+β41)q2+(β5β1+1)q3+(β52β4+β1)q4+(β2+1)q5+(β4+β3)q6+(2β4+2β3++β1)q7++(4β32β21)q99+O(q100) q + (\beta_{5} + \beta_{4} - 1) q^{2} + ( - \beta_{5} - \beta_1 + 1) q^{3} + ( - \beta_{5} - 2 \beta_{4} + \cdots - \beta_1) q^{4} + (\beta_{2} + 1) q^{5} + (\beta_{4} + \beta_{3}) q^{6} + (2 \beta_{4} + 2 \beta_{3} + \cdots + \beta_1) q^{7}+ \cdots + ( - 4 \beta_{3} - 2 \beta_{2} - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q2q2+2q3+8q5q63q7+6q8+3q95q108q1110q142q152q16+2q1718q184q194q213q22+5q23+9q24+2q99+O(q100) 6 q - 2 q^{2} + 2 q^{3} + 8 q^{5} - q^{6} - 3 q^{7} + 6 q^{8} + 3 q^{9} - 5 q^{10} - 8 q^{11} - 10 q^{14} - 2 q^{15} - 2 q^{16} + 2 q^{17} - 18 q^{18} - 4 q^{19} - 4 q^{21} - 3 q^{22} + 5 q^{23} + 9 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+3x4+5x22x+1 x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν5+3ν49ν3+5ν22ν+6)/13 ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 Copy content Toggle raw display
β3\beta_{3}== (3ν5+9ν414ν3+15ν26ν+18)/13 ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 Copy content Toggle raw display
β4\beta_{4}== (4ν5ν410ν36ν234ν2)/13 ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 Copy content Toggle raw display
β5\beta_{5}== (6ν5+5ν415ν39ν225ν+10)/13 ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β4+β3β2+β1 -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 Copy content Toggle raw display
ν3\nu^{3}== β33β2 \beta_{3} - 3\beta_{2} Copy content Toggle raw display
ν4\nu^{4}== 2β53β44β12 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 Copy content Toggle raw display
ν5\nu^{5}== β54β44β3+9β29β1 \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/169Z)×\left(\mathbb{Z}/169\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) β5-\beta_{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
22.1
0.222521 0.385418i
0.900969 1.56052i
−0.623490 + 1.07992i
0.222521 + 0.385418i
0.900969 + 1.56052i
−0.623490 1.07992i
−1.12349 + 1.94594i 0.277479 0.480608i −1.52446 2.64044i 1.44504 0.623490 + 1.07992i 1.02446 + 1.77441i 2.35690 1.34601 + 2.33136i −1.62349 + 2.81197i
22.2 −0.277479 + 0.480608i −0.400969 + 0.694498i 0.846011 + 1.46533i 2.80194 −0.222521 0.385418i −1.34601 2.33136i −2.04892 1.17845 + 2.04113i −0.777479 + 1.34663i
22.3 0.400969 0.694498i 1.12349 1.94594i 0.678448 + 1.17511i −0.246980 −0.900969 1.56052i −1.17845 2.04113i 2.69202 −1.02446 1.77441i −0.0990311 + 0.171527i
146.1 −1.12349 1.94594i 0.277479 + 0.480608i −1.52446 + 2.64044i 1.44504 0.623490 1.07992i 1.02446 1.77441i 2.35690 1.34601 2.33136i −1.62349 2.81197i
146.2 −0.277479 0.480608i −0.400969 0.694498i 0.846011 1.46533i 2.80194 −0.222521 + 0.385418i −1.34601 + 2.33136i −2.04892 1.17845 2.04113i −0.777479 1.34663i
146.3 0.400969 + 0.694498i 1.12349 + 1.94594i 0.678448 1.17511i −0.246980 −0.900969 + 1.56052i −1.17845 + 2.04113i 2.69202 −1.02446 + 1.77441i −0.0990311 0.171527i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 22.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.2.c.b 6
13.b even 2 1 169.2.c.c 6
13.c even 3 1 169.2.a.c yes 3
13.c even 3 1 inner 169.2.c.b 6
13.d odd 4 2 169.2.e.b 12
13.e even 6 1 169.2.a.b 3
13.e even 6 1 169.2.c.c 6
13.f odd 12 2 169.2.b.b 6
13.f odd 12 2 169.2.e.b 12
39.h odd 6 1 1521.2.a.r 3
39.i odd 6 1 1521.2.a.o 3
39.k even 12 2 1521.2.b.l 6
52.i odd 6 1 2704.2.a.z 3
52.j odd 6 1 2704.2.a.ba 3
52.l even 12 2 2704.2.f.o 6
65.l even 6 1 4225.2.a.bg 3
65.n even 6 1 4225.2.a.bb 3
91.n odd 6 1 8281.2.a.bj 3
91.t odd 6 1 8281.2.a.bf 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.2.a.b 3 13.e even 6 1
169.2.a.c yes 3 13.c even 3 1
169.2.b.b 6 13.f odd 12 2
169.2.c.b 6 1.a even 1 1 trivial
169.2.c.b 6 13.c even 3 1 inner
169.2.c.c 6 13.b even 2 1
169.2.c.c 6 13.e even 6 1
169.2.e.b 12 13.d odd 4 2
169.2.e.b 12 13.f odd 12 2
1521.2.a.o 3 39.i odd 6 1
1521.2.a.r 3 39.h odd 6 1
1521.2.b.l 6 39.k even 12 2
2704.2.a.z 3 52.i odd 6 1
2704.2.a.ba 3 52.j odd 6 1
2704.2.f.o 6 52.l even 12 2
4225.2.a.bb 3 65.n even 6 1
4225.2.a.bg 3 65.l even 6 1
8281.2.a.bf 3 91.t odd 6 1
8281.2.a.bj 3 91.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26+2T25+5T24+3T22+T2+1 T_{2}^{6} + 2T_{2}^{5} + 5T_{2}^{4} + 3T_{2}^{2} + T_{2} + 1 acting on S2new(169,[χ])S_{2}^{\mathrm{new}}(169, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+2T5++1 T^{6} + 2 T^{5} + \cdots + 1 Copy content Toggle raw display
33 T62T5++1 T^{6} - 2 T^{5} + \cdots + 1 Copy content Toggle raw display
55 (T34T2+3T+1)2 (T^{3} - 4 T^{2} + 3 T + 1)^{2} Copy content Toggle raw display
77 T6+3T5++169 T^{6} + 3 T^{5} + \cdots + 169 Copy content Toggle raw display
1111 T6+8T5++169 T^{6} + 8 T^{5} + \cdots + 169 Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 T62T5++169 T^{6} - 2 T^{5} + \cdots + 169 Copy content Toggle raw display
1919 T6+4T5++1 T^{6} + 4 T^{5} + \cdots + 1 Copy content Toggle raw display
2323 T65T5++169 T^{6} - 5 T^{5} + \cdots + 169 Copy content Toggle raw display
2929 T6T5++6889 T^{6} - T^{5} + \cdots + 6889 Copy content Toggle raw display
3131 (T35T2++167)2 (T^{3} - 5 T^{2} + \cdots + 167)^{2} Copy content Toggle raw display
3737 T612T5++841 T^{6} - 12 T^{5} + \cdots + 841 Copy content Toggle raw display
4141 T6+7T5++2401 T^{6} + 7 T^{5} + \cdots + 2401 Copy content Toggle raw display
4343 T6+13T5++169 T^{6} + 13 T^{5} + \cdots + 169 Copy content Toggle raw display
4747 (T318T2+167)2 (T^{3} - 18 T^{2} + \cdots - 167)^{2} Copy content Toggle raw display
5353 (T3T286T+337)2 (T^{3} - T^{2} - 86 T + 337)^{2} Copy content Toggle raw display
5959 T6+19T5++1 T^{6} + 19 T^{5} + \cdots + 1 Copy content Toggle raw display
6161 T6+4T5++57121 T^{6} + 4 T^{5} + \cdots + 57121 Copy content Toggle raw display
6767 T6+T5++1681 T^{6} + T^{5} + \cdots + 1681 Copy content Toggle raw display
7171 T6+27T5++299209 T^{6} + 27 T^{5} + \cdots + 299209 Copy content Toggle raw display
7373 (T3+9T2+911)2 (T^{3} + 9 T^{2} + \cdots - 911)^{2} Copy content Toggle raw display
7979 (T3+5T2++127)2 (T^{3} + 5 T^{2} + \cdots + 127)^{2} Copy content Toggle raw display
8383 (T37T2+203)2 (T^{3} - 7 T^{2} + \cdots - 203)^{2} Copy content Toggle raw display
8989 T6+11T5++78961 T^{6} + 11 T^{5} + \cdots + 78961 Copy content Toggle raw display
9797 T67T5++90601 T^{6} - 7 T^{5} + \cdots + 90601 Copy content Toggle raw display
show more
show less