Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,2,Mod(22,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.22");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 169.c (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 6.0.64827.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 |
|
−1.12349 | + | 1.94594i | 0.277479 | − | 0.480608i | −1.52446 | − | 2.64044i | 1.44504 | 0.623490 | + | 1.07992i | 1.02446 | + | 1.77441i | 2.35690 | 1.34601 | + | 2.33136i | −1.62349 | + | 2.81197i | ||||||||||||||||||||||
22.2 | −0.277479 | + | 0.480608i | −0.400969 | + | 0.694498i | 0.846011 | + | 1.46533i | 2.80194 | −0.222521 | − | 0.385418i | −1.34601 | − | 2.33136i | −2.04892 | 1.17845 | + | 2.04113i | −0.777479 | + | 1.34663i | |||||||||||||||||||||||
22.3 | 0.400969 | − | 0.694498i | 1.12349 | − | 1.94594i | 0.678448 | + | 1.17511i | −0.246980 | −0.900969 | − | 1.56052i | −1.17845 | − | 2.04113i | 2.69202 | −1.02446 | − | 1.77441i | −0.0990311 | + | 0.171527i | |||||||||||||||||||||||
146.1 | −1.12349 | − | 1.94594i | 0.277479 | + | 0.480608i | −1.52446 | + | 2.64044i | 1.44504 | 0.623490 | − | 1.07992i | 1.02446 | − | 1.77441i | 2.35690 | 1.34601 | − | 2.33136i | −1.62349 | − | 2.81197i | |||||||||||||||||||||||
146.2 | −0.277479 | − | 0.480608i | −0.400969 | − | 0.694498i | 0.846011 | − | 1.46533i | 2.80194 | −0.222521 | + | 0.385418i | −1.34601 | + | 2.33136i | −2.04892 | 1.17845 | − | 2.04113i | −0.777479 | − | 1.34663i | |||||||||||||||||||||||
146.3 | 0.400969 | + | 0.694498i | 1.12349 | + | 1.94594i | 0.678448 | − | 1.17511i | −0.246980 | −0.900969 | + | 1.56052i | −1.17845 | + | 2.04113i | 2.69202 | −1.02446 | + | 1.77441i | −0.0990311 | − | 0.171527i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.2.c.b | 6 | |
13.b | even | 2 | 1 | 169.2.c.c | 6 | ||
13.c | even | 3 | 1 | 169.2.a.c | yes | 3 | |
13.c | even | 3 | 1 | inner | 169.2.c.b | 6 | |
13.d | odd | 4 | 2 | 169.2.e.b | 12 | ||
13.e | even | 6 | 1 | 169.2.a.b | ✓ | 3 | |
13.e | even | 6 | 1 | 169.2.c.c | 6 | ||
13.f | odd | 12 | 2 | 169.2.b.b | 6 | ||
13.f | odd | 12 | 2 | 169.2.e.b | 12 | ||
39.h | odd | 6 | 1 | 1521.2.a.r | 3 | ||
39.i | odd | 6 | 1 | 1521.2.a.o | 3 | ||
39.k | even | 12 | 2 | 1521.2.b.l | 6 | ||
52.i | odd | 6 | 1 | 2704.2.a.z | 3 | ||
52.j | odd | 6 | 1 | 2704.2.a.ba | 3 | ||
52.l | even | 12 | 2 | 2704.2.f.o | 6 | ||
65.l | even | 6 | 1 | 4225.2.a.bg | 3 | ||
65.n | even | 6 | 1 | 4225.2.a.bb | 3 | ||
91.n | odd | 6 | 1 | 8281.2.a.bj | 3 | ||
91.t | odd | 6 | 1 | 8281.2.a.bf | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.2.a.b | ✓ | 3 | 13.e | even | 6 | 1 | |
169.2.a.c | yes | 3 | 13.c | even | 3 | 1 | |
169.2.b.b | 6 | 13.f | odd | 12 | 2 | ||
169.2.c.b | 6 | 1.a | even | 1 | 1 | trivial | |
169.2.c.b | 6 | 13.c | even | 3 | 1 | inner | |
169.2.c.c | 6 | 13.b | even | 2 | 1 | ||
169.2.c.c | 6 | 13.e | even | 6 | 1 | ||
169.2.e.b | 12 | 13.d | odd | 4 | 2 | ||
169.2.e.b | 12 | 13.f | odd | 12 | 2 | ||
1521.2.a.o | 3 | 39.i | odd | 6 | 1 | ||
1521.2.a.r | 3 | 39.h | odd | 6 | 1 | ||
1521.2.b.l | 6 | 39.k | even | 12 | 2 | ||
2704.2.a.z | 3 | 52.i | odd | 6 | 1 | ||
2704.2.a.ba | 3 | 52.j | odd | 6 | 1 | ||
2704.2.f.o | 6 | 52.l | even | 12 | 2 | ||
4225.2.a.bb | 3 | 65.n | even | 6 | 1 | ||
4225.2.a.bg | 3 | 65.l | even | 6 | 1 | ||
8281.2.a.bf | 3 | 91.t | odd | 6 | 1 | ||
8281.2.a.bj | 3 | 91.n | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .