L(s) = 1 | + (−1.12 + 1.94i)2-s + (0.277 − 0.480i)3-s + (−1.52 − 2.64i)4-s + 1.44·5-s + (0.623 + 1.07i)6-s + (1.02 + 1.77i)7-s + 2.35·8-s + (1.34 + 2.33i)9-s + (−1.62 + 2.81i)10-s + (−1.27 + 2.21i)11-s − 1.69·12-s − 4.60·14-s + (0.400 − 0.694i)15-s + (0.400 − 0.694i)16-s + (2.64 + 4.58i)17-s − 6.04·18-s + ⋯ |
L(s) = 1 | + (−0.794 + 1.37i)2-s + (0.160 − 0.277i)3-s + (−0.762 − 1.32i)4-s + 0.646·5-s + (0.254 + 0.440i)6-s + (0.387 + 0.670i)7-s + 0.833·8-s + (0.448 + 0.777i)9-s + (−0.513 + 0.889i)10-s + (−0.385 + 0.667i)11-s − 0.488·12-s − 1.23·14-s + (0.103 − 0.179i)15-s + (0.100 − 0.173i)16-s + (0.642 + 1.11i)17-s − 1.42·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.434−0.900i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(−0.434−0.900i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.434−0.900i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), −0.434−0.900i)
|
Particular Values
L(1) |
≈ |
0.468862+0.746537i |
L(21) |
≈ |
0.468862+0.746537i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(1.12−1.94i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.277+0.480i)T+(−1.5−2.59i)T2 |
| 5 | 1−1.44T+5T2 |
| 7 | 1+(−1.02−1.77i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.27−2.21i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−2.64−4.58i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.92+5.06i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.945+1.63i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.13−1.96i)T+(−14.5−25.1i)T2 |
| 31 | 1−4.26T+31T2 |
| 37 | 1+(−2.67+4.63i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.637+1.10i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.06+5.31i)T+(−21.5+37.2i)T2 |
| 47 | 1−2.95T+47T2 |
| 53 | 1−5.52T+53T2 |
| 59 | 1+(6.10+10.5i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.28+7.41i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.288+0.499i)T+(−33.5−58.0i)T2 |
| 71 | 1+(2.29+3.97i)T+(−35.5+61.4i)T2 |
| 73 | 1−10.5T+73T2 |
| 79 | 1+15.7T+79T2 |
| 83 | 1+7.72T+83T2 |
| 89 | 1+(−3.30+5.72i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−5.96−10.3i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.30274802493991943642062769430, −12.34513401850382240147921692645, −10.70270267797774437592931441116, −9.789333694698740747997270509197, −8.734142681309732121573547923881, −7.945879412669335960905066978024, −6.98069586484077288246712179424, −5.88007385283961264644554586828, −4.87754023786801768500699109148, −2.10733452583127623776427609752,
1.21457931513965198247650443666, 2.92403365456373249923848739359, 4.17350699102445290711291341779, 5.98004456164209953798977206940, 7.66314262783182347160004044771, 8.773825595905640774039793309036, 9.854957865324813564497159491176, 10.19863433196619759390761616131, 11.33204111691160329989223093198, 12.15836106979494755575747082313