L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 0.999·6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)10-s + (0.499 + 0.866i)12-s + 0.999·14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + 0.999·20-s + (0.499 + 0.866i)21-s + (0.5 + 0.866i)23-s + (0.499 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 0.999·6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)10-s + (0.499 + 0.866i)12-s + 0.999·14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + 0.999·20-s + (0.499 + 0.866i)21-s + (0.5 + 0.866i)23-s + (0.499 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5142261617\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5142261617\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.02974905280989370564192259687, −12.17860024544497028843624594850, −11.42040436361054528192267196081, −9.877769206049269076046763875976, −8.868601555853835613352467318640, −8.180747780401275503283824113235, −7.10387591591902298203109404153, −5.13376199973804018896584366820, −3.41763793665203501307430262132, −1.84798733176887999444039248112,
3.43782950479146480647989201129, 4.57530209214505313204504732398, 6.41661967871024913557960236053, 7.26104126294525014046992686963, 8.416143973274795439126093561837, 9.614591293890291152644650722770, 10.27748392754102519390547451999, 11.16716525752643526132281201912, 12.96999685799762280518674606496, 14.17587321847294524728955915446