Properties

Label 2-1440-1.1-c1-0-10
Degree $2$
Conductor $1440$
Sign $1$
Analytic cond. $11.4984$
Root an. cond. $3.39093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4.47·7-s + 4.47·11-s + 4·13-s − 2·17-s − 8.94·23-s + 25-s + 6·29-s − 8.94·31-s − 4.47·35-s + 8·37-s − 8·41-s + 8.94·47-s + 13.0·49-s + 6·53-s − 4.47·55-s + 4.47·59-s + 10·61-s − 4·65-s − 8.94·67-s + 8.94·71-s + 6·73-s + 20.0·77-s + 8.94·79-s − 8.94·83-s + 2·85-s − 4·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.69·7-s + 1.34·11-s + 1.10·13-s − 0.485·17-s − 1.86·23-s + 0.200·25-s + 1.11·29-s − 1.60·31-s − 0.755·35-s + 1.31·37-s − 1.24·41-s + 1.30·47-s + 1.85·49-s + 0.824·53-s − 0.603·55-s + 0.582·59-s + 1.28·61-s − 0.496·65-s − 1.09·67-s + 1.06·71-s + 0.702·73-s + 2.27·77-s + 1.00·79-s − 0.981·83-s + 0.216·85-s − 0.423·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(11.4984\)
Root analytic conductor: \(3.39093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.094036490\)
\(L(\frac12)\) \(\approx\) \(2.094036490\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 4.47T + 7T^{2} \)
11 \( 1 - 4.47T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 8.94T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 8.94T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 + 8T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 - 8.94T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 4.47T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 8.94T + 67T^{2} \)
71 \( 1 - 8.94T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 8.94T + 79T^{2} \)
83 \( 1 + 8.94T + 83T^{2} \)
89 \( 1 + 4T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.373791719654431270600819972011, −8.495905321502352456562376203856, −8.166052791193086010050666688408, −7.16226301259578703183065798768, −6.26337537079386845543709924020, −5.34944635106809400960610371164, −4.20678341357415009135671802046, −3.86396293560103417260816712209, −2.12132454984846043350366901398, −1.16402186534327768941641869551, 1.16402186534327768941641869551, 2.12132454984846043350366901398, 3.86396293560103417260816712209, 4.20678341357415009135671802046, 5.34944635106809400960610371164, 6.26337537079386845543709924020, 7.16226301259578703183065798768, 8.166052791193086010050666688408, 8.495905321502352456562376203856, 9.373791719654431270600819972011

Graph of the $Z$-function along the critical line