Properties

Label 1440.2.a.p.1.2
Level $1440$
Weight $2$
Character 1440.1
Self dual yes
Analytic conductor $11.498$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +4.47214 q^{7} +4.47214 q^{11} +4.00000 q^{13} -2.00000 q^{17} -8.94427 q^{23} +1.00000 q^{25} +6.00000 q^{29} -8.94427 q^{31} -4.47214 q^{35} +8.00000 q^{37} -8.00000 q^{41} +8.94427 q^{47} +13.0000 q^{49} +6.00000 q^{53} -4.47214 q^{55} +4.47214 q^{59} +10.0000 q^{61} -4.00000 q^{65} -8.94427 q^{67} +8.94427 q^{71} +6.00000 q^{73} +20.0000 q^{77} +8.94427 q^{79} -8.94427 q^{83} +2.00000 q^{85} -4.00000 q^{89} +17.8885 q^{91} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 8 q^{13} - 4 q^{17} + 2 q^{25} + 12 q^{29} + 16 q^{37} - 16 q^{41} + 26 q^{49} + 12 q^{53} + 20 q^{61} - 8 q^{65} + 12 q^{73} + 40 q^{77} + 4 q^{85} - 8 q^{89} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.47214 1.69031 0.845154 0.534522i \(-0.179509\pi\)
0.845154 + 0.534522i \(0.179509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.47214 1.34840 0.674200 0.738549i \(-0.264489\pi\)
0.674200 + 0.738549i \(0.264489\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.94427 −1.86501 −0.932505 0.361158i \(-0.882382\pi\)
−0.932505 + 0.361158i \(0.882382\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −8.94427 −1.60644 −0.803219 0.595683i \(-0.796881\pi\)
−0.803219 + 0.595683i \(0.796881\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.47214 −0.755929
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.94427 1.30466 0.652328 0.757937i \(-0.273792\pi\)
0.652328 + 0.757937i \(0.273792\pi\)
\(48\) 0 0
\(49\) 13.0000 1.85714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −4.47214 −0.603023
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.47214 0.582223 0.291111 0.956689i \(-0.405975\pi\)
0.291111 + 0.956689i \(0.405975\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −8.94427 −1.09272 −0.546358 0.837552i \(-0.683986\pi\)
−0.546358 + 0.837552i \(0.683986\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.94427 1.06149 0.530745 0.847532i \(-0.321912\pi\)
0.530745 + 0.847532i \(0.321912\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.0000 2.27921
\(78\) 0 0
\(79\) 8.94427 1.00631 0.503155 0.864196i \(-0.332173\pi\)
0.503155 + 0.864196i \(0.332173\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.94427 −0.981761 −0.490881 0.871227i \(-0.663325\pi\)
−0.490881 + 0.871227i \(0.663325\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 17.8885 1.87523
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 4.47214 0.440653 0.220326 0.975426i \(-0.429288\pi\)
0.220326 + 0.975426i \(0.429288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.94427 −0.864675 −0.432338 0.901712i \(-0.642311\pi\)
−0.432338 + 0.901712i \(0.642311\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 8.94427 0.834058
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.94427 −0.819920
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.47214 0.396838 0.198419 0.980117i \(-0.436419\pi\)
0.198419 + 0.980117i \(0.436419\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.47214 −0.390732 −0.195366 0.980730i \(-0.562590\pi\)
−0.195366 + 0.980730i \(0.562590\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −17.8885 −1.51729 −0.758643 0.651506i \(-0.774137\pi\)
−0.758643 + 0.651506i \(0.774137\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 17.8885 1.49592
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.94427 0.718421
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −40.0000 −3.15244
\(162\) 0 0
\(163\) −8.94427 −0.700569 −0.350285 0.936643i \(-0.613915\pi\)
−0.350285 + 0.936643i \(0.613915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.94427 −0.692129 −0.346064 0.938211i \(-0.612482\pi\)
−0.346064 + 0.938211i \(0.612482\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 4.47214 0.338062
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.47214 0.334263 0.167132 0.985935i \(-0.446550\pi\)
0.167132 + 0.985935i \(0.446550\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) −8.94427 −0.654070
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −26.8328 −1.94155 −0.970777 0.239983i \(-0.922858\pi\)
−0.970777 + 0.239983i \(0.922858\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −17.8885 −1.26809 −0.634043 0.773298i \(-0.718606\pi\)
−0.634043 + 0.773298i \(0.718606\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 26.8328 1.88329
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −40.0000 −2.71538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) −13.4164 −0.898429 −0.449215 0.893424i \(-0.648296\pi\)
−0.449215 + 0.893424i \(0.648296\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.8885 1.18730 0.593652 0.804722i \(-0.297686\pi\)
0.593652 + 0.804722i \(0.297686\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) −8.94427 −0.583460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.94427 0.578557 0.289278 0.957245i \(-0.406585\pi\)
0.289278 + 0.957245i \(0.406585\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.0000 −0.830540
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.3607 −1.41139 −0.705697 0.708514i \(-0.749366\pi\)
−0.705697 + 0.708514i \(0.749366\pi\)
\(252\) 0 0
\(253\) −40.0000 −2.51478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 35.7771 2.22308
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.94427 0.551527 0.275764 0.961225i \(-0.411069\pi\)
0.275764 + 0.961225i \(0.411069\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.47214 0.269680
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 26.8328 1.59505 0.797523 0.603289i \(-0.206143\pi\)
0.797523 + 0.603289i \(0.206143\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −35.7771 −2.11185
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −4.47214 −0.260378
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −35.7771 −2.06904
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 17.8885 1.02095 0.510477 0.859892i \(-0.329469\pi\)
0.510477 + 0.859892i \(0.329469\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.94427 0.507183 0.253592 0.967311i \(-0.418388\pi\)
0.253592 + 0.967311i \(0.418388\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 26.8328 1.50235
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 40.0000 2.20527
\(330\) 0 0
\(331\) −35.7771 −1.96649 −0.983243 0.182298i \(-0.941646\pi\)
−0.983243 + 0.182298i \(0.941646\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.94427 0.488678
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −40.0000 −2.16612
\(342\) 0 0
\(343\) 26.8328 1.44884
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −8.94427 −0.474713
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35.7771 1.88824 0.944121 0.329598i \(-0.106913\pi\)
0.944121 + 0.329598i \(0.106913\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −13.4164 −0.700331 −0.350165 0.936688i \(-0.613875\pi\)
−0.350165 + 0.936688i \(0.613875\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 26.8328 1.39309
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −17.8885 −0.918873 −0.459436 0.888211i \(-0.651949\pi\)
−0.459436 + 0.888211i \(0.651949\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.94427 −0.457031 −0.228515 0.973540i \(-0.573387\pi\)
−0.228515 + 0.973540i \(0.573387\pi\)
\(384\) 0 0
\(385\) −20.0000 −1.01929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 17.8885 0.904663
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.94427 −0.450035
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 0 0
\(403\) −35.7771 −1.78218
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 35.7771 1.77340
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.0000 0.984136
\(414\) 0 0
\(415\) 8.94427 0.439057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.47214 −0.218478 −0.109239 0.994016i \(-0.534841\pi\)
−0.109239 + 0.994016i \(0.534841\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 44.7214 2.16422
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.8885 0.861661 0.430830 0.902433i \(-0.358221\pi\)
0.430830 + 0.902433i \(0.358221\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −35.7771 −1.70755 −0.853774 0.520644i \(-0.825692\pi\)
−0.853774 + 0.520644i \(0.825692\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −35.7771 −1.69982 −0.849910 0.526927i \(-0.823344\pi\)
−0.849910 + 0.526927i \(0.823344\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) −35.7771 −1.68468
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.8885 −0.838628
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −40.2492 −1.87054 −0.935270 0.353935i \(-0.884843\pi\)
−0.935270 + 0.353935i \(0.884843\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.94427 −0.413892 −0.206946 0.978352i \(-0.566352\pi\)
−0.206946 + 0.978352i \(0.566352\pi\)
\(468\) 0 0
\(469\) −40.0000 −1.84703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.8328 −1.22602 −0.613011 0.790074i \(-0.710042\pi\)
−0.613011 + 0.790074i \(0.710042\pi\)
\(480\) 0 0
\(481\) 32.0000 1.45907
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −22.3607 −1.01326 −0.506630 0.862164i \(-0.669109\pi\)
−0.506630 + 0.862164i \(0.669109\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.47214 −0.201825 −0.100912 0.994895i \(-0.532176\pi\)
−0.100912 + 0.994895i \(0.532176\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40.0000 1.79425
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.8328 −1.19642 −0.598208 0.801341i \(-0.704120\pi\)
−0.598208 + 0.801341i \(0.704120\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 26.8328 1.18701
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.47214 −0.197066
\(516\) 0 0
\(517\) 40.0000 1.75920
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.0000 0.876216 0.438108 0.898922i \(-0.355649\pi\)
0.438108 + 0.898922i \(0.355649\pi\)
\(522\) 0 0
\(523\) 26.8328 1.17332 0.586659 0.809834i \(-0.300443\pi\)
0.586659 + 0.809834i \(0.300443\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.8885 0.779237
\(528\) 0 0
\(529\) 57.0000 2.47826
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −32.0000 −1.38607
\(534\) 0 0
\(535\) 8.94427 0.386695
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 58.1378 2.50417
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 40.0000 1.70097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0000 0.932170 0.466085 0.884740i \(-0.345664\pi\)
0.466085 + 0.884740i \(0.345664\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.8885 −0.753912 −0.376956 0.926231i \(-0.623029\pi\)
−0.376956 + 0.926231i \(0.623029\pi\)
\(564\) 0 0
\(565\) 14.0000 0.588984
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.0000 0.838444 0.419222 0.907884i \(-0.362303\pi\)
0.419222 + 0.907884i \(0.362303\pi\)
\(570\) 0 0
\(571\) 35.7771 1.49722 0.748612 0.663008i \(-0.230720\pi\)
0.748612 + 0.663008i \(0.230720\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.94427 −0.373002
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −40.0000 −1.65948
\(582\) 0 0
\(583\) 26.8328 1.11130
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.8328 1.10751 0.553754 0.832680i \(-0.313195\pi\)
0.553754 + 0.832680i \(0.313195\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 8.94427 0.366679
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −35.7771 −1.46181 −0.730906 0.682478i \(-0.760902\pi\)
−0.730906 + 0.682478i \(0.760902\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.00000 −0.365902
\(606\) 0 0
\(607\) −22.3607 −0.907592 −0.453796 0.891106i \(-0.649931\pi\)
−0.453796 + 0.891106i \(0.649931\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 35.7771 1.44739
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 17.8885 0.719001 0.359501 0.933145i \(-0.382947\pi\)
0.359501 + 0.933145i \(0.382947\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −17.8885 −0.716689
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) 26.8328 1.06820 0.534099 0.845422i \(-0.320651\pi\)
0.534099 + 0.845422i \(0.320651\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.47214 −0.177471
\(636\) 0 0
\(637\) 52.0000 2.06032
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.00000 0.315981 0.157991 0.987441i \(-0.449498\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) 8.94427 0.352728 0.176364 0.984325i \(-0.443566\pi\)
0.176364 + 0.984325i \(0.443566\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.94427 −0.351636 −0.175818 0.984423i \(-0.556257\pi\)
−0.175818 + 0.984423i \(0.556257\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 4.47214 0.174741
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.4164 0.522629 0.261315 0.965254i \(-0.415844\pi\)
0.261315 + 0.965254i \(0.415844\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −53.6656 −2.07794
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 44.7214 1.72645
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) 8.94427 0.343250
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.94427 0.342243 0.171122 0.985250i \(-0.445261\pi\)
0.171122 + 0.985250i \(0.445261\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 17.8885 0.680512 0.340256 0.940333i \(-0.389486\pi\)
0.340256 + 0.940333i \(0.389486\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.8885 0.678551
\(696\) 0 0
\(697\) 16.0000 0.606043
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.0000 1.43524 0.717620 0.696435i \(-0.245231\pi\)
0.717620 + 0.696435i \(0.245231\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −44.7214 −1.68192
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 80.0000 2.99602
\(714\) 0 0
\(715\) −17.8885 −0.668994
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.8885 −0.667130 −0.333565 0.942727i \(-0.608252\pi\)
−0.333565 + 0.942727i \(0.608252\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 13.4164 0.497587 0.248794 0.968557i \(-0.419966\pi\)
0.248794 + 0.968557i \(0.419966\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 16.0000 0.590973 0.295487 0.955347i \(-0.404518\pi\)
0.295487 + 0.955347i \(0.404518\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −40.0000 −1.47342
\(738\) 0 0
\(739\) 17.8885 0.658041 0.329020 0.944323i \(-0.393282\pi\)
0.329020 + 0.944323i \(0.393282\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.94427 0.328134 0.164067 0.986449i \(-0.447539\pi\)
0.164067 + 0.986449i \(0.447539\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) 0 0
\(751\) −26.8328 −0.979143 −0.489572 0.871963i \(-0.662847\pi\)
−0.489572 + 0.871963i \(0.662847\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 0 0
\(763\) −26.8328 −0.971413
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17.8885 0.645918
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −8.94427 −0.321288
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 40.0000 1.43131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.0000 −0.428298
\(786\) 0 0
\(787\) −26.8328 −0.956487 −0.478243 0.878227i \(-0.658726\pi\)
−0.478243 + 0.878227i \(0.658726\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −62.6099 −2.22615
\(792\) 0 0
\(793\) 40.0000 1.42044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) −17.8885 −0.632851
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 26.8328 0.946910
\(804\) 0 0
\(805\) 40.0000 1.40981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.0000 0.843795 0.421898 0.906644i \(-0.361364\pi\)
0.421898 + 0.906644i \(0.361364\pi\)
\(810\) 0 0
\(811\) −17.8885 −0.628152 −0.314076 0.949398i \(-0.601695\pi\)
−0.314076 + 0.949398i \(0.601695\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.94427 0.313304
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) −40.2492 −1.40300 −0.701500 0.712670i \(-0.747486\pi\)
−0.701500 + 0.712670i \(0.747486\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −17.8885 −0.622046 −0.311023 0.950402i \(-0.600672\pi\)
−0.311023 + 0.950402i \(0.600672\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −26.0000 −0.900847
\(834\) 0 0
\(835\) 8.94427 0.309529
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.8885 0.617581 0.308791 0.951130i \(-0.400076\pi\)
0.308791 + 0.951130i \(0.400076\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 40.2492 1.38298
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −71.5542 −2.45285
\(852\) 0 0
\(853\) 16.0000 0.547830 0.273915 0.961754i \(-0.411681\pi\)
0.273915 + 0.961754i \(0.411681\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −53.6656 −1.83105 −0.915524 0.402264i \(-0.868224\pi\)
−0.915524 + 0.402264i \(0.868224\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.8328 0.913400 0.456700 0.889621i \(-0.349031\pi\)
0.456700 + 0.889621i \(0.349031\pi\)
\(864\) 0 0
\(865\) −14.0000 −0.476014
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) −35.7771 −1.21226
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.47214 −0.151186
\(876\) 0 0
\(877\) 52.0000 1.75592 0.877958 0.478738i \(-0.158906\pi\)
0.877958 + 0.478738i \(0.158906\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) 0 0
\(883\) 8.94427 0.300999 0.150499 0.988610i \(-0.451912\pi\)
0.150499 + 0.988610i \(0.451912\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.94427 0.300319 0.150160 0.988662i \(-0.452021\pi\)
0.150160 + 0.988662i \(0.452021\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −4.47214 −0.149487
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −53.6656 −1.78985
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.0000 0.731305
\(906\) 0 0
\(907\) 53.6656 1.78194 0.890969 0.454064i \(-0.150026\pi\)
0.890969 + 0.454064i \(0.150026\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −17.8885 −0.592674 −0.296337 0.955083i \(-0.595765\pi\)
−0.296337 + 0.955083i \(0.595765\pi\)
\(912\) 0 0
\(913\) −40.0000 −1.32381
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.0000 −0.660458
\(918\) 0 0
\(919\) 26.8328 0.885133 0.442566 0.896736i \(-0.354068\pi\)
0.442566 + 0.896736i \(0.354068\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 35.7771 1.17762
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −20.0000 −0.656179 −0.328089 0.944647i \(-0.606405\pi\)
−0.328089 + 0.944647i \(0.606405\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.94427 0.292509
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 0 0
\(943\) 71.5542 2.33012
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 26.8328 0.868290
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 80.4984 2.59943
\(960\) 0 0
\(961\) 49.0000 1.58065
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) 40.2492 1.29433 0.647164 0.762351i \(-0.275955\pi\)
0.647164 + 0.762351i \(0.275955\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.3050 1.00462 0.502312 0.864687i \(-0.332483\pi\)
0.502312 + 0.864687i \(0.332483\pi\)
\(972\) 0 0
\(973\) −80.0000 −2.56468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −17.8885 −0.571720
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 44.7214 1.42639 0.713195 0.700966i \(-0.247247\pi\)
0.713195 + 0.700966i \(0.247247\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −53.6656 −1.70474 −0.852372 0.522935i \(-0.824837\pi\)
−0.852372 + 0.522935i \(0.824837\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.8885 0.567105
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.2.a.p.1.2 yes 2
3.2 odd 2 1440.2.a.q.1.2 yes 2
4.3 odd 2 inner 1440.2.a.p.1.1 2
5.2 odd 4 7200.2.f.be.6049.4 4
5.3 odd 4 7200.2.f.be.6049.2 4
5.4 even 2 7200.2.a.ch.1.1 2
8.3 odd 2 2880.2.a.bj.1.1 2
8.5 even 2 2880.2.a.bj.1.2 2
12.11 even 2 1440.2.a.q.1.1 yes 2
15.2 even 4 7200.2.f.bj.6049.3 4
15.8 even 4 7200.2.f.bj.6049.1 4
15.14 odd 2 7200.2.a.cg.1.1 2
20.3 even 4 7200.2.f.be.6049.3 4
20.7 even 4 7200.2.f.be.6049.1 4
20.19 odd 2 7200.2.a.ch.1.2 2
24.5 odd 2 2880.2.a.bi.1.2 2
24.11 even 2 2880.2.a.bi.1.1 2
60.23 odd 4 7200.2.f.bj.6049.4 4
60.47 odd 4 7200.2.f.bj.6049.2 4
60.59 even 2 7200.2.a.cg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.2.a.p.1.1 2 4.3 odd 2 inner
1440.2.a.p.1.2 yes 2 1.1 even 1 trivial
1440.2.a.q.1.1 yes 2 12.11 even 2
1440.2.a.q.1.2 yes 2 3.2 odd 2
2880.2.a.bi.1.1 2 24.11 even 2
2880.2.a.bi.1.2 2 24.5 odd 2
2880.2.a.bj.1.1 2 8.3 odd 2
2880.2.a.bj.1.2 2 8.5 even 2
7200.2.a.cg.1.1 2 15.14 odd 2
7200.2.a.cg.1.2 2 60.59 even 2
7200.2.a.ch.1.1 2 5.4 even 2
7200.2.a.ch.1.2 2 20.19 odd 2
7200.2.f.be.6049.1 4 20.7 even 4
7200.2.f.be.6049.2 4 5.3 odd 4
7200.2.f.be.6049.3 4 20.3 even 4
7200.2.f.be.6049.4 4 5.2 odd 4
7200.2.f.bj.6049.1 4 15.8 even 4
7200.2.f.bj.6049.2 4 60.47 odd 4
7200.2.f.bj.6049.3 4 15.2 even 4
7200.2.f.bj.6049.4 4 60.23 odd 4