Properties

Label 7200.2.f.be.6049.1
Level $7200$
Weight $2$
Character 7200.6049
Analytic conductor $57.492$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(6049,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.6049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 6049.1
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 7200.6049
Dual form 7200.2.f.be.6049.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.47214i q^{7} -4.47214 q^{11} -4.00000i q^{13} -2.00000i q^{17} -8.94427i q^{23} -6.00000 q^{29} +8.94427 q^{31} +8.00000i q^{37} -8.00000 q^{41} -8.94427i q^{47} -13.0000 q^{49} -6.00000i q^{53} +4.47214 q^{59} +10.0000 q^{61} +8.94427i q^{67} -8.94427 q^{71} -6.00000i q^{73} +20.0000i q^{77} +8.94427 q^{79} -8.94427i q^{83} +4.00000 q^{89} -17.8885 q^{91} +2.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 24 q^{29} - 32 q^{41} - 52 q^{49} + 40 q^{61} + 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.47214i − 1.69031i −0.534522 0.845154i \(-0.679509\pi\)
0.534522 0.845154i \(-0.320491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.47214 −1.34840 −0.674200 0.738549i \(-0.735511\pi\)
−0.674200 + 0.738549i \(0.735511\pi\)
\(12\) 0 0
\(13\) − 4.00000i − 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 8.94427i − 1.86501i −0.361158 0.932505i \(-0.617618\pi\)
0.361158 0.932505i \(-0.382382\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 8.94427 1.60644 0.803219 0.595683i \(-0.203119\pi\)
0.803219 + 0.595683i \(0.203119\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.94427i − 1.30466i −0.757937 0.652328i \(-0.773792\pi\)
0.757937 0.652328i \(-0.226208\pi\)
\(48\) 0 0
\(49\) −13.0000 −1.85714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.47214 0.582223 0.291111 0.956689i \(-0.405975\pi\)
0.291111 + 0.956689i \(0.405975\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.94427i 1.09272i 0.837552 + 0.546358i \(0.183986\pi\)
−0.837552 + 0.546358i \(0.816014\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.94427 −1.06149 −0.530745 0.847532i \(-0.678088\pi\)
−0.530745 + 0.847532i \(0.678088\pi\)
\(72\) 0 0
\(73\) − 6.00000i − 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.0000i 2.27921i
\(78\) 0 0
\(79\) 8.94427 1.00631 0.503155 0.864196i \(-0.332173\pi\)
0.503155 + 0.864196i \(0.332173\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 8.94427i − 0.981761i −0.871227 0.490881i \(-0.836675\pi\)
0.871227 0.490881i \(-0.163325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) −17.8885 −1.87523
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 4.47214i 0.440653i 0.975426 + 0.220326i \(0.0707122\pi\)
−0.975426 + 0.220326i \(0.929288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.94427i 0.864675i 0.901712 + 0.432338i \(0.142311\pi\)
−0.901712 + 0.432338i \(0.857689\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.94427 −0.819920
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 4.47214i − 0.396838i −0.980117 0.198419i \(-0.936419\pi\)
0.980117 0.198419i \(-0.0635807\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.47214 0.390732 0.195366 0.980730i \(-0.437410\pi\)
0.195366 + 0.980730i \(0.437410\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) −17.8885 −1.51729 −0.758643 0.651506i \(-0.774137\pi\)
−0.758643 + 0.651506i \(0.774137\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 17.8885i 1.49592i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0000i 0.957704i 0.877896 + 0.478852i \(0.158947\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −40.0000 −3.15244
\(162\) 0 0
\(163\) − 8.94427i − 0.700569i −0.936643 0.350285i \(-0.886085\pi\)
0.936643 0.350285i \(-0.113915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.94427i 0.692129i 0.938211 + 0.346064i \(0.112482\pi\)
−0.938211 + 0.346064i \(0.887518\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 14.0000i − 1.06440i −0.846619 0.532200i \(-0.821365\pi\)
0.846619 0.532200i \(-0.178635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.47214 0.334263 0.167132 0.985935i \(-0.446550\pi\)
0.167132 + 0.985935i \(0.446550\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.94427i 0.654070i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.8328 1.94155 0.970777 0.239983i \(-0.0771417\pi\)
0.970777 + 0.239983i \(0.0771417\pi\)
\(192\) 0 0
\(193\) − 6.00000i − 0.431889i −0.976406 0.215945i \(-0.930717\pi\)
0.976406 0.215945i \(-0.0692831\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) −17.8885 −1.26809 −0.634043 0.773298i \(-0.718606\pi\)
−0.634043 + 0.773298i \(0.718606\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 26.8328i 1.88329i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 40.0000i − 2.71538i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) − 13.4164i − 0.898429i −0.893424 0.449215i \(-0.851704\pi\)
0.893424 0.449215i \(-0.148296\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 17.8885i − 1.18730i −0.804722 0.593652i \(-0.797686\pi\)
0.804722 0.593652i \(-0.202314\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 14.0000i − 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.94427 0.578557 0.289278 0.957245i \(-0.406585\pi\)
0.289278 + 0.957245i \(0.406585\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.3607 1.41139 0.705697 0.708514i \(-0.250634\pi\)
0.705697 + 0.708514i \(0.250634\pi\)
\(252\) 0 0
\(253\) 40.0000i 2.51478i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.00000i 0.124757i 0.998053 + 0.0623783i \(0.0198685\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) 0 0
\(259\) 35.7771 2.22308
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.94427i 0.551527i 0.961225 + 0.275764i \(0.0889307\pi\)
−0.961225 + 0.275764i \(0.911069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 26.8328i 1.59505i 0.603289 + 0.797523i \(0.293857\pi\)
−0.603289 + 0.797523i \(0.706143\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 35.7771i 2.11185i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −35.7771 −2.06904
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 17.8885i − 1.02095i −0.859892 0.510477i \(-0.829469\pi\)
0.859892 0.510477i \(-0.170531\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.94427 −0.507183 −0.253592 0.967311i \(-0.581612\pi\)
−0.253592 + 0.967311i \(0.581612\pi\)
\(312\) 0 0
\(313\) − 6.00000i − 0.339140i −0.985518 0.169570i \(-0.945762\pi\)
0.985518 0.169570i \(-0.0542379\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) 26.8328 1.50235
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −40.0000 −2.20527
\(330\) 0 0
\(331\) 35.7771 1.96649 0.983243 0.182298i \(-0.0583536\pi\)
0.983243 + 0.182298i \(0.0583536\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 18.0000i − 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −40.0000 −2.16612
\(342\) 0 0
\(343\) 26.8328i 1.44884i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6.00000i − 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35.7771 1.88824 0.944121 0.329598i \(-0.106913\pi\)
0.944121 + 0.329598i \(0.106913\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.4164i 0.700331i 0.936688 + 0.350165i \(0.113875\pi\)
−0.936688 + 0.350165i \(0.886125\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −26.8328 −1.39309
\(372\) 0 0
\(373\) − 4.00000i − 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000i 1.23606i
\(378\) 0 0
\(379\) −17.8885 −0.918873 −0.459436 0.888211i \(-0.651949\pi\)
−0.459436 + 0.888211i \(0.651949\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 8.94427i − 0.457031i −0.973540 0.228515i \(-0.926613\pi\)
0.973540 0.228515i \(-0.0733872\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −17.8885 −0.904663
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 0 0
\(403\) − 35.7771i − 1.78218i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 35.7771i − 1.77340i
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 20.0000i − 0.984136i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.47214 −0.218478 −0.109239 0.994016i \(-0.534841\pi\)
−0.109239 + 0.994016i \(0.534841\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 44.7214i − 2.16422i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.8885 −0.861661 −0.430830 0.902433i \(-0.641779\pi\)
−0.430830 + 0.902433i \(0.641779\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −35.7771 −1.70755 −0.853774 0.520644i \(-0.825692\pi\)
−0.853774 + 0.520644i \(0.825692\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 35.7771i − 1.69982i −0.526927 0.849910i \(-0.676656\pi\)
0.526927 0.849910i \(-0.323344\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.0000 0.943858 0.471929 0.881636i \(-0.343558\pi\)
0.471929 + 0.881636i \(0.343558\pi\)
\(450\) 0 0
\(451\) 35.7771 1.68468
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 22.0000i − 1.02912i −0.857455 0.514558i \(-0.827956\pi\)
0.857455 0.514558i \(-0.172044\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) − 40.2492i − 1.87054i −0.353935 0.935270i \(-0.615157\pi\)
0.353935 0.935270i \(-0.384843\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.94427i 0.413892i 0.978352 + 0.206946i \(0.0663524\pi\)
−0.978352 + 0.206946i \(0.933648\pi\)
\(468\) 0 0
\(469\) 40.0000 1.84703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.8328 −1.22602 −0.613011 0.790074i \(-0.710042\pi\)
−0.613011 + 0.790074i \(0.710042\pi\)
\(480\) 0 0
\(481\) 32.0000 1.45907
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 22.3607i 1.01326i 0.862164 + 0.506630i \(0.169109\pi\)
−0.862164 + 0.506630i \(0.830891\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.47214 0.201825 0.100912 0.994895i \(-0.467824\pi\)
0.100912 + 0.994895i \(0.467824\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40.0000i 1.79425i
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 26.8328i − 1.19642i −0.801341 0.598208i \(-0.795880\pi\)
0.801341 0.598208i \(-0.204120\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.0000 −0.620539 −0.310270 0.950649i \(-0.600419\pi\)
−0.310270 + 0.950649i \(0.600419\pi\)
\(510\) 0 0
\(511\) −26.8328 −1.18701
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 40.0000i 1.75920i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.0000 0.876216 0.438108 0.898922i \(-0.355649\pi\)
0.438108 + 0.898922i \(0.355649\pi\)
\(522\) 0 0
\(523\) 26.8328i 1.17332i 0.809834 + 0.586659i \(0.199557\pi\)
−0.809834 + 0.586659i \(0.800443\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 17.8885i − 0.779237i
\(528\) 0 0
\(529\) −57.0000 −2.47826
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 32.0000i 1.38607i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 58.1378 2.50417
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) − 40.0000i − 1.70097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0000i 0.932170i 0.884740 + 0.466085i \(0.154336\pi\)
−0.884740 + 0.466085i \(0.845664\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 17.8885i − 0.753912i −0.926231 0.376956i \(-0.876971\pi\)
0.926231 0.376956i \(-0.123029\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 0 0
\(571\) −35.7771 −1.49722 −0.748612 0.663008i \(-0.769280\pi\)
−0.748612 + 0.663008i \(0.769280\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 38.0000i − 1.58196i −0.611842 0.790980i \(-0.709571\pi\)
0.611842 0.790980i \(-0.290429\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −40.0000 −1.65948
\(582\) 0 0
\(583\) 26.8328i 1.11130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 26.8328i − 1.10751i −0.832680 0.553754i \(-0.813195\pi\)
0.832680 0.553754i \(-0.186805\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −35.7771 −1.46181 −0.730906 0.682478i \(-0.760902\pi\)
−0.730906 + 0.682478i \(0.760902\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.3607i 0.907592i 0.891106 + 0.453796i \(0.149931\pi\)
−0.891106 + 0.453796i \(0.850069\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −35.7771 −1.44739
\(612\) 0 0
\(613\) − 16.0000i − 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.0000i 1.52982i 0.644136 + 0.764911i \(0.277217\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) 0 0
\(619\) 17.8885 0.719001 0.359501 0.933145i \(-0.382947\pi\)
0.359501 + 0.933145i \(0.382947\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 17.8885i − 0.716689i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) −26.8328 −1.06820 −0.534099 0.845422i \(-0.679349\pi\)
−0.534099 + 0.845422i \(0.679349\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 52.0000i 2.06032i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.00000 0.315981 0.157991 0.987441i \(-0.449498\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) 8.94427i 0.352728i 0.984325 + 0.176364i \(0.0564335\pi\)
−0.984325 + 0.176364i \(0.943566\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.94427i 0.351636i 0.984423 + 0.175818i \(0.0562570\pi\)
−0.984423 + 0.175818i \(0.943743\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.0000i 0.547862i 0.961749 + 0.273931i \(0.0883240\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.4164 0.522629 0.261315 0.965254i \(-0.415844\pi\)
0.261315 + 0.965254i \(0.415844\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 53.6656i 2.07794i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −44.7214 −1.72645
\(672\) 0 0
\(673\) − 14.0000i − 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 38.0000i − 1.46046i −0.683202 0.730229i \(-0.739413\pi\)
0.683202 0.730229i \(-0.260587\pi\)
\(678\) 0 0
\(679\) 8.94427 0.343250
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.94427i 0.342243i 0.985250 + 0.171122i \(0.0547391\pi\)
−0.985250 + 0.171122i \(0.945261\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) −17.8885 −0.680512 −0.340256 0.940333i \(-0.610514\pi\)
−0.340256 + 0.940333i \(0.610514\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 16.0000i 0.606043i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.0000 1.43524 0.717620 0.696435i \(-0.245231\pi\)
0.717620 + 0.696435i \(0.245231\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 44.7214i 1.68192i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 80.0000i − 2.99602i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.8885 −0.667130 −0.333565 0.942727i \(-0.608252\pi\)
−0.333565 + 0.942727i \(0.608252\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 13.4164i − 0.497587i −0.968557 0.248794i \(-0.919966\pi\)
0.968557 0.248794i \(-0.0800341\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 16.0000i − 0.590973i −0.955347 0.295487i \(-0.904518\pi\)
0.955347 0.295487i \(-0.0954818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 40.0000i − 1.47342i
\(738\) 0 0
\(739\) 17.8885 0.658041 0.329020 0.944323i \(-0.393282\pi\)
0.329020 + 0.944323i \(0.393282\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.94427i 0.328134i 0.986449 + 0.164067i \(0.0524612\pi\)
−0.986449 + 0.164067i \(0.947539\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) 26.8328 0.979143 0.489572 0.871963i \(-0.337153\pi\)
0.489572 + 0.871963i \(0.337153\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.00000i 0.290765i 0.989376 + 0.145382i \(0.0464413\pi\)
−0.989376 + 0.145382i \(0.953559\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 0 0
\(763\) − 26.8328i − 0.971413i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 17.8885i − 0.645918i
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 40.0000 1.43131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26.8328i 0.956487i 0.878227 + 0.478243i \(0.158726\pi\)
−0.878227 + 0.478243i \(0.841274\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 62.6099 2.22615
\(792\) 0 0
\(793\) − 40.0000i − 1.42044i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 18.0000i − 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(798\) 0 0
\(799\) −17.8885 −0.632851
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 26.8328i 0.946910i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) 17.8885 0.628152 0.314076 0.949398i \(-0.398305\pi\)
0.314076 + 0.949398i \(0.398305\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) − 40.2492i − 1.40300i −0.712670 0.701500i \(-0.752514\pi\)
0.712670 0.701500i \(-0.247486\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17.8885i 0.622046i 0.950402 + 0.311023i \(0.100672\pi\)
−0.950402 + 0.311023i \(0.899328\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.0000i 0.900847i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.8885 0.617581 0.308791 0.951130i \(-0.400076\pi\)
0.308791 + 0.951130i \(0.400076\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 40.2492i − 1.38298i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 71.5542 2.45285
\(852\) 0 0
\(853\) − 16.0000i − 0.547830i −0.961754 0.273915i \(-0.911681\pi\)
0.961754 0.273915i \(-0.0883186\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 18.0000i − 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) −53.6656 −1.83105 −0.915524 0.402264i \(-0.868224\pi\)
−0.915524 + 0.402264i \(0.868224\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.8328i 0.913400i 0.889621 + 0.456700i \(0.150969\pi\)
−0.889621 + 0.456700i \(0.849031\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −40.0000 −1.35691
\(870\) 0 0
\(871\) 35.7771 1.21226
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 52.0000i 1.75592i 0.478738 + 0.877958i \(0.341094\pi\)
−0.478738 + 0.877958i \(0.658906\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) 0 0
\(883\) 8.94427i 0.300999i 0.988610 + 0.150499i \(0.0480881\pi\)
−0.988610 + 0.150499i \(0.951912\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 8.94427i − 0.300319i −0.988662 0.150160i \(-0.952021\pi\)
0.988662 0.150160i \(-0.0479788\pi\)
\(888\) 0 0
\(889\) −20.0000 −0.670778
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −53.6656 −1.78985
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 53.6656i − 1.78194i −0.454064 0.890969i \(-0.650026\pi\)
0.454064 0.890969i \(-0.349974\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.8885 0.592674 0.296337 0.955083i \(-0.404235\pi\)
0.296337 + 0.955083i \(0.404235\pi\)
\(912\) 0 0
\(913\) 40.0000i 1.32381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 20.0000i − 0.660458i
\(918\) 0 0
\(919\) 26.8328 0.885133 0.442566 0.896736i \(-0.354068\pi\)
0.442566 + 0.896736i \(0.354068\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 35.7771i 1.17762i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 38.0000i − 1.24141i −0.784046 0.620703i \(-0.786847\pi\)
0.784046 0.620703i \(-0.213153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 0 0
\(943\) 71.5542i 2.33012i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −24.0000 −0.779073
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000i 1.74923i 0.484817 + 0.874616i \(0.338886\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 80.4984 2.59943
\(960\) 0 0
\(961\) 49.0000 1.58065
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 40.2492i − 1.29433i −0.762351 0.647164i \(-0.775955\pi\)
0.762351 0.647164i \(-0.224045\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −31.3050 −1.00462 −0.502312 0.864687i \(-0.667517\pi\)
−0.502312 + 0.864687i \(0.667517\pi\)
\(972\) 0 0
\(973\) 80.0000i 2.56468i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) −17.8885 −0.571720
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 44.7214i 1.42639i 0.700966 + 0.713195i \(0.252753\pi\)
−0.700966 + 0.713195i \(0.747247\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 53.6656 1.70474 0.852372 0.522935i \(-0.175163\pi\)
0.852372 + 0.522935i \(0.175163\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 28.0000i − 0.886769i −0.896332 0.443384i \(-0.853778\pi\)
0.896332 0.443384i \(-0.146222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.f.be.6049.1 4
3.2 odd 2 7200.2.f.bj.6049.2 4
4.3 odd 2 inner 7200.2.f.be.6049.4 4
5.2 odd 4 7200.2.a.ch.1.2 2
5.3 odd 4 1440.2.a.p.1.1 2
5.4 even 2 inner 7200.2.f.be.6049.3 4
12.11 even 2 7200.2.f.bj.6049.3 4
15.2 even 4 7200.2.a.cg.1.2 2
15.8 even 4 1440.2.a.q.1.1 yes 2
15.14 odd 2 7200.2.f.bj.6049.4 4
20.3 even 4 1440.2.a.p.1.2 yes 2
20.7 even 4 7200.2.a.ch.1.1 2
20.19 odd 2 inner 7200.2.f.be.6049.2 4
40.3 even 4 2880.2.a.bj.1.2 2
40.13 odd 4 2880.2.a.bj.1.1 2
60.23 odd 4 1440.2.a.q.1.2 yes 2
60.47 odd 4 7200.2.a.cg.1.1 2
60.59 even 2 7200.2.f.bj.6049.1 4
120.53 even 4 2880.2.a.bi.1.1 2
120.83 odd 4 2880.2.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.2.a.p.1.1 2 5.3 odd 4
1440.2.a.p.1.2 yes 2 20.3 even 4
1440.2.a.q.1.1 yes 2 15.8 even 4
1440.2.a.q.1.2 yes 2 60.23 odd 4
2880.2.a.bi.1.1 2 120.53 even 4
2880.2.a.bi.1.2 2 120.83 odd 4
2880.2.a.bj.1.1 2 40.13 odd 4
2880.2.a.bj.1.2 2 40.3 even 4
7200.2.a.cg.1.1 2 60.47 odd 4
7200.2.a.cg.1.2 2 15.2 even 4
7200.2.a.ch.1.1 2 20.7 even 4
7200.2.a.ch.1.2 2 5.2 odd 4
7200.2.f.be.6049.1 4 1.1 even 1 trivial
7200.2.f.be.6049.2 4 20.19 odd 2 inner
7200.2.f.be.6049.3 4 5.4 even 2 inner
7200.2.f.be.6049.4 4 4.3 odd 2 inner
7200.2.f.bj.6049.1 4 60.59 even 2
7200.2.f.bj.6049.2 4 3.2 odd 2
7200.2.f.bj.6049.3 4 12.11 even 2
7200.2.f.bj.6049.4 4 15.14 odd 2