L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s + (0.382 + 0.923i)5-s + (−0.923 + 0.382i)8-s + 10-s + i·16-s + 1.84·17-s + (0.707 − 1.70i)19-s + (0.382 − 0.923i)20-s + (0.541 + 0.541i)23-s + (−0.707 + 0.707i)25-s − 1.41i·31-s + (0.923 + 0.382i)32-s + (0.707 − 1.70i)34-s + (−1.30 − 1.30i)38-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s + (0.382 + 0.923i)5-s + (−0.923 + 0.382i)8-s + 10-s + i·16-s + 1.84·17-s + (0.707 − 1.70i)19-s + (0.382 − 0.923i)20-s + (0.541 + 0.541i)23-s + (−0.707 + 0.707i)25-s − 1.41i·31-s + (0.923 + 0.382i)32-s + (0.707 − 1.70i)34-s + (−1.30 − 1.30i)38-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)(0.555+0.831i)Λ(1−s)
Λ(s)=(=(1440s/2ΓC(s)L(s)(0.555+0.831i)Λ(1−s)
Degree: |
2 |
Conductor: |
1440
= 25⋅32⋅5
|
Sign: |
0.555+0.831i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1440(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1440, ( :0), 0.555+0.831i)
|
Particular Values
L(21) |
≈ |
1.346837721 |
L(21) |
≈ |
1.346837721 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.382+0.923i)T |
| 3 | 1 |
| 5 | 1+(−0.382−0.923i)T |
good | 7 | 1−iT2 |
| 11 | 1+(0.707−0.707i)T2 |
| 13 | 1+(−0.707−0.707i)T2 |
| 17 | 1−1.84T+T2 |
| 19 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 23 | 1+(−0.541−0.541i)T+iT2 |
| 29 | 1+(−0.707−0.707i)T2 |
| 31 | 1+1.41iT−T2 |
| 37 | 1+(−0.707+0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−0.707+0.707i)T2 |
| 47 | 1−1.84iT−T2 |
| 53 | 1+(1.30−0.541i)T+(0.707−0.707i)T2 |
| 59 | 1+(−0.707+0.707i)T2 |
| 61 | 1+(−0.292+0.707i)T+(−0.707−0.707i)T2 |
| 67 | 1+(−0.707−0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1−iT2 |
| 79 | 1+2T+T2 |
| 83 | 1+(1.30+0.541i)T+(0.707+0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.531555225639342006175746437668, −9.399904678785301262628204516463, −7.950480890242577609284118807644, −7.17070348572596042979740311329, −6.06336744428075710689591055225, −5.43551914263728054837150957472, −4.40616895923143626590892893629, −3.19223574811498754235292801754, −2.75411192494407367358931728483, −1.32239118898914464723366804000,
1.35326322453470757397759246155, 3.17184652890364860468629258192, 4.01966055549181989290746870474, 5.29051211760914600236031270383, 5.43445196039847682003895836933, 6.50378277082367548913192166125, 7.48493252972116377867043804991, 8.219626761502157695984613077385, 8.773609955791345383231418163240, 9.822545425116588180613369880299