L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s + (0.382 + 0.923i)5-s + (−0.923 + 0.382i)8-s + 10-s + i·16-s + 1.84·17-s + (0.707 − 1.70i)19-s + (0.382 − 0.923i)20-s + (0.541 + 0.541i)23-s + (−0.707 + 0.707i)25-s − 1.41i·31-s + (0.923 + 0.382i)32-s + (0.707 − 1.70i)34-s + (−1.30 − 1.30i)38-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s + (0.382 + 0.923i)5-s + (−0.923 + 0.382i)8-s + 10-s + i·16-s + 1.84·17-s + (0.707 − 1.70i)19-s + (0.382 − 0.923i)20-s + (0.541 + 0.541i)23-s + (−0.707 + 0.707i)25-s − 1.41i·31-s + (0.923 + 0.382i)32-s + (0.707 − 1.70i)34-s + (−1.30 − 1.30i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.346837721\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.346837721\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 + 0.923i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.382 - 0.923i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 17 | \( 1 - 1.84T + T^{2} \) |
| 19 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 29 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + 1.41iT - T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 - 1.84iT - T^{2} \) |
| 53 | \( 1 + (1.30 - 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + (1.30 + 0.541i)T + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.531555225639342006175746437668, −9.399904678785301262628204516463, −7.950480890242577609284118807644, −7.17070348572596042979740311329, −6.06336744428075710689591055225, −5.43551914263728054837150957472, −4.40616895923143626590892893629, −3.19223574811498754235292801754, −2.75411192494407367358931728483, −1.32239118898914464723366804000,
1.35326322453470757397759246155, 3.17184652890364860468629258192, 4.01966055549181989290746870474, 5.29051211760914600236031270383, 5.43445196039847682003895836933, 6.50378277082367548913192166125, 7.48493252972116377867043804991, 8.219626761502157695984613077385, 8.773609955791345383231418163240, 9.822545425116588180613369880299