L(s) = 1 | − 6·2-s + 9·3-s + 4·4-s − 78·5-s − 54·6-s + 168·8-s + 81·9-s + 468·10-s + 444·11-s + 36·12-s + 442·13-s − 702·15-s − 1.13e3·16-s + 126·17-s − 486·18-s − 2.68e3·19-s − 312·20-s − 2.66e3·22-s + 4.20e3·23-s + 1.51e3·24-s + 2.95e3·25-s − 2.65e3·26-s + 729·27-s − 5.44e3·29-s + 4.21e3·30-s − 80·31-s + 1.44e3·32-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 0.577·3-s + 1/8·4-s − 1.39·5-s − 0.612·6-s + 0.928·8-s + 1/3·9-s + 1.47·10-s + 1.10·11-s + 0.0721·12-s + 0.725·13-s − 0.805·15-s − 1.10·16-s + 0.105·17-s − 0.353·18-s − 1.70·19-s − 0.174·20-s − 1.17·22-s + 1.65·23-s + 0.535·24-s + 0.946·25-s − 0.769·26-s + 0.192·27-s − 1.20·29-s + 0.854·30-s − 0.0149·31-s + 0.248·32-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−p2T |
| 7 | 1 |
good | 2 | 1+3pT+p5T2 |
| 5 | 1+78T+p5T2 |
| 11 | 1−444T+p5T2 |
| 13 | 1−34pT+p5T2 |
| 17 | 1−126T+p5T2 |
| 19 | 1+2684T+p5T2 |
| 23 | 1−4200T+p5T2 |
| 29 | 1+5442T+p5T2 |
| 31 | 1+80T+p5T2 |
| 37 | 1+5434T+p5T2 |
| 41 | 1+7962T+p5T2 |
| 43 | 1+268pT+p5T2 |
| 47 | 1−13920T+p5T2 |
| 53 | 1+9594T+p5T2 |
| 59 | 1+27492T+p5T2 |
| 61 | 1+49478T+p5T2 |
| 67 | 1+59356T+p5T2 |
| 71 | 1−32040T+p5T2 |
| 73 | 1−61846T+p5T2 |
| 79 | 1+65776T+p5T2 |
| 83 | 1+40188T+p5T2 |
| 89 | 1−7974T+p5T2 |
| 97 | 1−143662T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.33691382444602661676796984865, −10.60096114619047474880460011031, −9.120639165452258990306953998291, −8.663423568224121446368503890948, −7.70532215906419380097637815362, −6.73864989978780196308920997253, −4.48494206107780944893104157030, −3.56105570507868716757861496148, −1.45458680556475004975894606522, 0,
1.45458680556475004975894606522, 3.56105570507868716757861496148, 4.48494206107780944893104157030, 6.73864989978780196308920997253, 7.70532215906419380097637815362, 8.663423568224121446368503890948, 9.120639165452258990306953998291, 10.60096114619047474880460011031, 11.33691382444602661676796984865