Properties

Label 2-147-1.1-c5-0-18
Degree $2$
Conductor $147$
Sign $-1$
Analytic cond. $23.5764$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 9·3-s + 4·4-s − 78·5-s − 54·6-s + 168·8-s + 81·9-s + 468·10-s + 444·11-s + 36·12-s + 442·13-s − 702·15-s − 1.13e3·16-s + 126·17-s − 486·18-s − 2.68e3·19-s − 312·20-s − 2.66e3·22-s + 4.20e3·23-s + 1.51e3·24-s + 2.95e3·25-s − 2.65e3·26-s + 729·27-s − 5.44e3·29-s + 4.21e3·30-s − 80·31-s + 1.44e3·32-s + ⋯
L(s)  = 1  − 1.06·2-s + 0.577·3-s + 1/8·4-s − 1.39·5-s − 0.612·6-s + 0.928·8-s + 1/3·9-s + 1.47·10-s + 1.10·11-s + 0.0721·12-s + 0.725·13-s − 0.805·15-s − 1.10·16-s + 0.105·17-s − 0.353·18-s − 1.70·19-s − 0.174·20-s − 1.17·22-s + 1.65·23-s + 0.535·24-s + 0.946·25-s − 0.769·26-s + 0.192·27-s − 1.20·29-s + 0.854·30-s − 0.0149·31-s + 0.248·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(23.5764\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 147,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p^{2} T \)
7 \( 1 \)
good2 \( 1 + 3 p T + p^{5} T^{2} \)
5 \( 1 + 78 T + p^{5} T^{2} \)
11 \( 1 - 444 T + p^{5} T^{2} \)
13 \( 1 - 34 p T + p^{5} T^{2} \)
17 \( 1 - 126 T + p^{5} T^{2} \)
19 \( 1 + 2684 T + p^{5} T^{2} \)
23 \( 1 - 4200 T + p^{5} T^{2} \)
29 \( 1 + 5442 T + p^{5} T^{2} \)
31 \( 1 + 80 T + p^{5} T^{2} \)
37 \( 1 + 5434 T + p^{5} T^{2} \)
41 \( 1 + 7962 T + p^{5} T^{2} \)
43 \( 1 + 268 p T + p^{5} T^{2} \)
47 \( 1 - 13920 T + p^{5} T^{2} \)
53 \( 1 + 9594 T + p^{5} T^{2} \)
59 \( 1 + 27492 T + p^{5} T^{2} \)
61 \( 1 + 49478 T + p^{5} T^{2} \)
67 \( 1 + 59356 T + p^{5} T^{2} \)
71 \( 1 - 32040 T + p^{5} T^{2} \)
73 \( 1 - 61846 T + p^{5} T^{2} \)
79 \( 1 + 65776 T + p^{5} T^{2} \)
83 \( 1 + 40188 T + p^{5} T^{2} \)
89 \( 1 - 7974 T + p^{5} T^{2} \)
97 \( 1 - 143662 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33691382444602661676796984865, −10.60096114619047474880460011031, −9.120639165452258990306953998291, −8.663423568224121446368503890948, −7.70532215906419380097637815362, −6.73864989978780196308920997253, −4.48494206107780944893104157030, −3.56105570507868716757861496148, −1.45458680556475004975894606522, 0, 1.45458680556475004975894606522, 3.56105570507868716757861496148, 4.48494206107780944893104157030, 6.73864989978780196308920997253, 7.70532215906419380097637815362, 8.663423568224121446368503890948, 9.120639165452258990306953998291, 10.60096114619047474880460011031, 11.33691382444602661676796984865

Graph of the $Z$-function along the critical line