Properties

Label 147.6.a.b.1.1
Level 147147
Weight 66
Character 147.1
Self dual yes
Analytic conductor 23.57623.576
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 147=372 147 = 3 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 23.576421512523.5764215125
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 147.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q6.00000q2+9.00000q3+4.00000q478.0000q554.0000q6+168.000q8+81.0000q9+468.000q10+444.000q11+36.0000q12+442.000q13702.000q151136.00q16+126.000q17486.000q182684.00q19312.000q202664.00q22+4200.00q23+1512.00q24+2959.00q252652.00q26+729.000q275442.00q29+4212.00q3080.0000q31+1440.00q32+3996.00q33756.000q34+324.000q365434.00q37+16104.0q38+3978.00q3913104.0q407962.00q4111524.0q43+1776.00q446318.00q4525200.0q46+13920.0q4710224.0q4817754.0q50+1134.00q51+1768.00q529594.00q534374.00q5434632.0q5524156.0q57+32652.0q5827492.0q592808.00q6049478.0q61+480.000q62+27712.0q6434476.0q6523976.0q6659356.0q67+504.000q68+37800.0q69+32040.0q71+13608.0q72+61846.0q73+32604.0q74+26631.0q7510736.0q7623868.0q7865776.0q79+88608.0q80+6561.00q81+47772.0q8240188.0q839828.00q85+69144.0q8648978.0q87+74592.0q88+7974.00q89+37908.0q90+16800.0q92720.000q9383520.0q94+209352.q95+12960.0q96+143662.q97+35964.0q99+O(q100)q-6.00000 q^{2} +9.00000 q^{3} +4.00000 q^{4} -78.0000 q^{5} -54.0000 q^{6} +168.000 q^{8} +81.0000 q^{9} +468.000 q^{10} +444.000 q^{11} +36.0000 q^{12} +442.000 q^{13} -702.000 q^{15} -1136.00 q^{16} +126.000 q^{17} -486.000 q^{18} -2684.00 q^{19} -312.000 q^{20} -2664.00 q^{22} +4200.00 q^{23} +1512.00 q^{24} +2959.00 q^{25} -2652.00 q^{26} +729.000 q^{27} -5442.00 q^{29} +4212.00 q^{30} -80.0000 q^{31} +1440.00 q^{32} +3996.00 q^{33} -756.000 q^{34} +324.000 q^{36} -5434.00 q^{37} +16104.0 q^{38} +3978.00 q^{39} -13104.0 q^{40} -7962.00 q^{41} -11524.0 q^{43} +1776.00 q^{44} -6318.00 q^{45} -25200.0 q^{46} +13920.0 q^{47} -10224.0 q^{48} -17754.0 q^{50} +1134.00 q^{51} +1768.00 q^{52} -9594.00 q^{53} -4374.00 q^{54} -34632.0 q^{55} -24156.0 q^{57} +32652.0 q^{58} -27492.0 q^{59} -2808.00 q^{60} -49478.0 q^{61} +480.000 q^{62} +27712.0 q^{64} -34476.0 q^{65} -23976.0 q^{66} -59356.0 q^{67} +504.000 q^{68} +37800.0 q^{69} +32040.0 q^{71} +13608.0 q^{72} +61846.0 q^{73} +32604.0 q^{74} +26631.0 q^{75} -10736.0 q^{76} -23868.0 q^{78} -65776.0 q^{79} +88608.0 q^{80} +6561.00 q^{81} +47772.0 q^{82} -40188.0 q^{83} -9828.00 q^{85} +69144.0 q^{86} -48978.0 q^{87} +74592.0 q^{88} +7974.00 q^{89} +37908.0 q^{90} +16800.0 q^{92} -720.000 q^{93} -83520.0 q^{94} +209352. q^{95} +12960.0 q^{96} +143662. q^{97} +35964.0 q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −6.00000 −1.06066 −0.530330 0.847791i 0.677932π-0.677932\pi
−0.530330 + 0.847791i 0.677932π0.677932\pi
33 9.00000 0.577350
44 4.00000 0.125000
55 −78.0000 −1.39531 −0.697653 0.716436i 0.745772π-0.745772\pi
−0.697653 + 0.716436i 0.745772π0.745772\pi
66 −54.0000 −0.612372
77 0 0
88 168.000 0.928078
99 81.0000 0.333333
1010 468.000 1.47995
1111 444.000 1.10637 0.553186 0.833058i 0.313412π-0.313412\pi
0.553186 + 0.833058i 0.313412π0.313412\pi
1212 36.0000 0.0721688
1313 442.000 0.725377 0.362689 0.931910i 0.381859π-0.381859\pi
0.362689 + 0.931910i 0.381859π0.381859\pi
1414 0 0
1515 −702.000 −0.805581
1616 −1136.00 −1.10938
1717 126.000 0.105742 0.0528711 0.998601i 0.483163π-0.483163\pi
0.0528711 + 0.998601i 0.483163π0.483163\pi
1818 −486.000 −0.353553
1919 −2684.00 −1.70568 −0.852842 0.522169i 0.825123π-0.825123\pi
−0.852842 + 0.522169i 0.825123π0.825123\pi
2020 −312.000 −0.174413
2121 0 0
2222 −2664.00 −1.17348
2323 4200.00 1.65550 0.827751 0.561096i 0.189620π-0.189620\pi
0.827751 + 0.561096i 0.189620π0.189620\pi
2424 1512.00 0.535826
2525 2959.00 0.946880
2626 −2652.00 −0.769379
2727 729.000 0.192450
2828 0 0
2929 −5442.00 −1.20161 −0.600805 0.799396i 0.705153π-0.705153\pi
−0.600805 + 0.799396i 0.705153π0.705153\pi
3030 4212.00 0.854447
3131 −80.0000 −0.0149515 −0.00747577 0.999972i 0.502380π-0.502380\pi
−0.00747577 + 0.999972i 0.502380π0.502380\pi
3232 1440.00 0.248592
3333 3996.00 0.638764
3434 −756.000 −0.112157
3535 0 0
3636 324.000 0.0416667
3737 −5434.00 −0.652552 −0.326276 0.945274i 0.605794π-0.605794\pi
−0.326276 + 0.945274i 0.605794π0.605794\pi
3838 16104.0 1.80915
3939 3978.00 0.418797
4040 −13104.0 −1.29495
4141 −7962.00 −0.739712 −0.369856 0.929089i 0.620593π-0.620593\pi
−0.369856 + 0.929089i 0.620593π0.620593\pi
4242 0 0
4343 −11524.0 −0.950456 −0.475228 0.879863i 0.657634π-0.657634\pi
−0.475228 + 0.879863i 0.657634π0.657634\pi
4444 1776.00 0.138297
4545 −6318.00 −0.465102
4646 −25200.0 −1.75592
4747 13920.0 0.919167 0.459584 0.888134i 0.347999π-0.347999\pi
0.459584 + 0.888134i 0.347999π0.347999\pi
4848 −10224.0 −0.640498
4949 0 0
5050 −17754.0 −1.00432
5151 1134.00 0.0610503
5252 1768.00 0.0906721
5353 −9594.00 −0.469148 −0.234574 0.972098i 0.575370π-0.575370\pi
−0.234574 + 0.972098i 0.575370π0.575370\pi
5454 −4374.00 −0.204124
5555 −34632.0 −1.54373
5656 0 0
5757 −24156.0 −0.984777
5858 32652.0 1.27450
5959 −27492.0 −1.02820 −0.514098 0.857731i 0.671873π-0.671873\pi
−0.514098 + 0.857731i 0.671873π0.671873\pi
6060 −2808.00 −0.100698
6161 −49478.0 −1.70250 −0.851251 0.524759i 0.824155π-0.824155\pi
−0.851251 + 0.524759i 0.824155π0.824155\pi
6262 480.000 0.0158585
6363 0 0
6464 27712.0 0.845703
6565 −34476.0 −1.01212
6666 −23976.0 −0.677512
6767 −59356.0 −1.61539 −0.807695 0.589600i 0.799285π-0.799285\pi
−0.807695 + 0.589600i 0.799285π0.799285\pi
6868 504.000 0.0132178
6969 37800.0 0.955805
7070 0 0
7171 32040.0 0.754304 0.377152 0.926151i 0.376903π-0.376903\pi
0.377152 + 0.926151i 0.376903π0.376903\pi
7272 13608.0 0.309359
7373 61846.0 1.35833 0.679164 0.733987i 0.262343π-0.262343\pi
0.679164 + 0.733987i 0.262343π0.262343\pi
7474 32604.0 0.692136
7575 26631.0 0.546681
7676 −10736.0 −0.213210
7777 0 0
7878 −23868.0 −0.444201
7979 −65776.0 −1.18577 −0.592884 0.805288i 0.702011π-0.702011\pi
−0.592884 + 0.805288i 0.702011π0.702011\pi
8080 88608.0 1.54792
8181 6561.00 0.111111
8282 47772.0 0.784583
8383 −40188.0 −0.640326 −0.320163 0.947362i 0.603738π-0.603738\pi
−0.320163 + 0.947362i 0.603738π0.603738\pi
8484 0 0
8585 −9828.00 −0.147543
8686 69144.0 1.00811
8787 −48978.0 −0.693750
8888 74592.0 1.02680
8989 7974.00 0.106709 0.0533545 0.998576i 0.483009π-0.483009\pi
0.0533545 + 0.998576i 0.483009π0.483009\pi
9090 37908.0 0.493315
9191 0 0
9292 16800.0 0.206938
9393 −720.000 −0.00863227
9494 −83520.0 −0.974924
9595 209352. 2.37995
9696 12960.0 0.143525
9797 143662. 1.55029 0.775144 0.631784i 0.217677π-0.217677\pi
0.775144 + 0.631784i 0.217677π0.217677\pi
9898 0 0
9999 35964.0 0.368791
100100 11836.0 0.118360
101101 2706.00 0.0263952 0.0131976 0.999913i 0.495799π-0.495799\pi
0.0131976 + 0.999913i 0.495799π0.495799\pi
102102 −6804.00 −0.0647536
103103 −131768. −1.22382 −0.611909 0.790928i 0.709598π-0.709598\pi
−0.611909 + 0.790928i 0.709598π0.709598\pi
104104 74256.0 0.673206
105105 0 0
106106 57564.0 0.497607
107107 −128916. −1.08855 −0.544274 0.838908i 0.683195π-0.683195\pi
−0.544274 + 0.838908i 0.683195π0.683195\pi
108108 2916.00 0.0240563
109109 −100978. −0.814068 −0.407034 0.913413i 0.633437π-0.633437\pi
−0.407034 + 0.913413i 0.633437π0.633437\pi
110110 207792. 1.63737
111111 −48906.0 −0.376751
112112 0 0
113113 220146. 1.62186 0.810932 0.585140i 0.198960π-0.198960\pi
0.810932 + 0.585140i 0.198960π0.198960\pi
114114 144936. 1.04451
115115 −327600. −2.30993
116116 −21768.0 −0.150201
117117 35802.0 0.241792
118118 164952. 1.09057
119119 0 0
120120 −117936. −0.747641
121121 36085.0 0.224059
122122 296868. 1.80578
123123 −71658.0 −0.427073
124124 −320.000 −0.00186894
125125 12948.0 0.0741187
126126 0 0
127127 −74320.0 −0.408880 −0.204440 0.978879i 0.565537π-0.565537\pi
−0.204440 + 0.978879i 0.565537π0.565537\pi
128128 −212352. −1.14560
129129 −103716. −0.548746
130130 206856. 1.07352
131131 155316. 0.790748 0.395374 0.918520i 0.370615π-0.370615\pi
0.395374 + 0.918520i 0.370615π0.370615\pi
132132 15984.0 0.0798455
133133 0 0
134134 356136. 1.71338
135135 −56862.0 −0.268527
136136 21168.0 0.0981369
137137 −264246. −1.20284 −0.601419 0.798934i 0.705398π-0.705398\pi
−0.601419 + 0.798934i 0.705398π0.705398\pi
138138 −226800. −1.01378
139139 −224612. −0.986043 −0.493022 0.870017i 0.664108π-0.664108\pi
−0.493022 + 0.870017i 0.664108π0.664108\pi
140140 0 0
141141 125280. 0.530682
142142 −192240. −0.800061
143143 196248. 0.802537
144144 −92016.0 −0.369792
145145 424476. 1.67661
146146 −371076. −1.44072
147147 0 0
148148 −21736.0 −0.0815690
149149 −82074.0 −0.302859 −0.151429 0.988468i 0.548388π-0.548388\pi
−0.151429 + 0.988468i 0.548388π0.548388\pi
150150 −159786. −0.579843
151151 −287032. −1.02444 −0.512222 0.858853i 0.671177π-0.671177\pi
−0.512222 + 0.858853i 0.671177π0.671177\pi
152152 −450912. −1.58301
153153 10206.0 0.0352474
154154 0 0
155155 6240.00 0.0208620
156156 15912.0 0.0523496
157157 −129878. −0.420520 −0.210260 0.977646i 0.567431π-0.567431\pi
−0.210260 + 0.977646i 0.567431π0.567431\pi
158158 394656. 1.25770
159159 −86346.0 −0.270863
160160 −112320. −0.346862
161161 0 0
162162 −39366.0 −0.117851
163163 555284. 1.63699 0.818495 0.574513i 0.194809π-0.194809\pi
0.818495 + 0.574513i 0.194809π0.194809\pi
164164 −31848.0 −0.0924640
165165 −311688. −0.891272
166166 241128. 0.679168
167167 −43512.0 −0.120731 −0.0603654 0.998176i 0.519227π-0.519227\pi
−0.0603654 + 0.998176i 0.519227π0.519227\pi
168168 0 0
169169 −175929. −0.473828
170170 58968.0 0.156493
171171 −217404. −0.568561
172172 −46096.0 −0.118807
173173 18330.0 0.0465637 0.0232818 0.999729i 0.492588π-0.492588\pi
0.0232818 + 0.999729i 0.492588π0.492588\pi
174174 293868. 0.735833
175175 0 0
176176 −504384. −1.22738
177177 −247428. −0.593630
178178 −47844.0 −0.113182
179179 −153324. −0.357666 −0.178833 0.983879i 0.557232π-0.557232\pi
−0.178833 + 0.983879i 0.557232π0.557232\pi
180180 −25272.0 −0.0581378
181181 382066. 0.866846 0.433423 0.901191i 0.357306π-0.357306\pi
0.433423 + 0.901191i 0.357306π0.357306\pi
182182 0 0
183183 −445302. −0.982940
184184 705600. 1.53643
185185 423852. 0.910510
186186 4320.00 0.00915591
187187 55944.0 0.116990
188188 55680.0 0.114896
189189 0 0
190190 −1.25611e6 −2.52432
191191 −273408. −0.542285 −0.271143 0.962539i 0.587402π-0.587402\pi
−0.271143 + 0.962539i 0.587402π0.587402\pi
192192 249408. 0.488267
193193 153602. 0.296827 0.148414 0.988925i 0.452583π-0.452583\pi
0.148414 + 0.988925i 0.452583π0.452583\pi
194194 −861972. −1.64433
195195 −310284. −0.584350
196196 0 0
197197 154422. 0.283494 0.141747 0.989903i 0.454728π-0.454728\pi
0.141747 + 0.989903i 0.454728π0.454728\pi
198198 −215784. −0.391162
199199 366856. 0.656694 0.328347 0.944557i 0.393508π-0.393508\pi
0.328347 + 0.944557i 0.393508π0.393508\pi
200200 497112. 0.878778
201201 −534204. −0.932646
202202 −16236.0 −0.0279963
203203 0 0
204204 4536.00 0.00763128
205205 621036. 1.03212
206206 790608. 1.29806
207207 340200. 0.551834
208208 −502112. −0.804715
209209 −1.19170e6 −1.88712
210210 0 0
211211 520244. 0.804453 0.402227 0.915540i 0.368236π-0.368236\pi
0.402227 + 0.915540i 0.368236π0.368236\pi
212212 −38376.0 −0.0586435
213213 288360. 0.435498
214214 773496. 1.15458
215215 898872. 1.32618
216216 122472. 0.178609
217217 0 0
218218 605868. 0.863449
219219 556614. 0.784231
220220 −138528. −0.192966
221221 55692.0 0.0767030
222222 293436. 0.399605
223223 −304736. −0.410357 −0.205178 0.978725i 0.565777π-0.565777\pi
−0.205178 + 0.978725i 0.565777π0.565777\pi
224224 0 0
225225 239679. 0.315627
226226 −1.32088e6 −1.72025
227227 −288588. −0.371718 −0.185859 0.982576i 0.559507π-0.559507\pi
−0.185859 + 0.982576i 0.559507π0.559507\pi
228228 −96624.0 −0.123097
229229 −772190. −0.973051 −0.486525 0.873666i 0.661736π-0.661736\pi
−0.486525 + 0.873666i 0.661736π0.661736\pi
230230 1.96560e6 2.45005
231231 0 0
232232 −914256. −1.11519
233233 252234. 0.304378 0.152189 0.988351i 0.451368π-0.451368\pi
0.152189 + 0.988351i 0.451368π0.451368\pi
234234 −214812. −0.256460
235235 −1.08576e6 −1.28252
236236 −109968. −0.128525
237237 −591984. −0.684603
238238 0 0
239239 −1.45114e6 −1.64329 −0.821643 0.570002i 0.806942π-0.806942\pi
−0.821643 + 0.570002i 0.806942π0.806942\pi
240240 797472. 0.893691
241241 146398. 0.162365 0.0811825 0.996699i 0.474130π-0.474130\pi
0.0811825 + 0.996699i 0.474130π0.474130\pi
242242 −216510. −0.237651
243243 59049.0 0.0641500
244244 −197912. −0.212813
245245 0 0
246246 429948. 0.452979
247247 −1.18633e6 −1.23726
248248 −13440.0 −0.0138762
249249 −361692. −0.369692
250250 −77688.0 −0.0786147
251251 −607860. −0.609003 −0.304501 0.952512i 0.598490π-0.598490\pi
−0.304501 + 0.952512i 0.598490π0.598490\pi
252252 0 0
253253 1.86480e6 1.83160
254254 445920. 0.433683
255255 −88452.0 −0.0851838
256256 387328. 0.369385
257257 −95586.0 −0.0902737 −0.0451369 0.998981i 0.514372π-0.514372\pi
−0.0451369 + 0.998981i 0.514372π0.514372\pi
258258 622296. 0.582033
259259 0 0
260260 −137904. −0.126515
261261 −440802. −0.400537
262262 −931896. −0.838715
263263 −2.20034e6 −1.96156 −0.980779 0.195121i 0.937490π-0.937490\pi
−0.980779 + 0.195121i 0.937490π0.937490\pi
264264 671328. 0.592823
265265 748332. 0.654605
266266 0 0
267267 71766.0 0.0616085
268268 −237424. −0.201924
269269 −1.77025e6 −1.49160 −0.745801 0.666169i 0.767933π-0.767933\pi
−0.745801 + 0.666169i 0.767933π0.767933\pi
270270 341172. 0.284816
271271 223504. 0.184868 0.0924341 0.995719i 0.470535π-0.470535\pi
0.0924341 + 0.995719i 0.470535π0.470535\pi
272272 −143136. −0.117308
273273 0 0
274274 1.58548e6 1.27580
275275 1.31380e6 1.04760
276276 151200. 0.119476
277277 −342778. −0.268419 −0.134210 0.990953i 0.542850π-0.542850\pi
−0.134210 + 0.990953i 0.542850π0.542850\pi
278278 1.34767e6 1.04586
279279 −6480.00 −0.00498384
280280 0 0
281281 480378. 0.362925 0.181463 0.983398i 0.441917π-0.441917\pi
0.181463 + 0.983398i 0.441917π0.441917\pi
282282 −751680. −0.562873
283283 29980.0 0.0222518 0.0111259 0.999938i 0.496458π-0.496458\pi
0.0111259 + 0.999938i 0.496458π0.496458\pi
284284 128160. 0.0942880
285285 1.88417e6 1.37407
286286 −1.17749e6 −0.851219
287287 0 0
288288 116640. 0.0828641
289289 −1.40398e6 −0.988819
290290 −2.54686e6 −1.77832
291291 1.29296e6 0.895060
292292 247384. 0.169791
293293 198066. 0.134785 0.0673924 0.997727i 0.478532π-0.478532\pi
0.0673924 + 0.997727i 0.478532π0.478532\pi
294294 0 0
295295 2.14438e6 1.43465
296296 −912912. −0.605619
297297 323676. 0.212921
298298 492444. 0.321230
299299 1.85640e6 1.20086
300300 106524. 0.0683352
301301 0 0
302302 1.72219e6 1.08659
303303 24354.0 0.0152393
304304 3.04902e6 1.89224
305305 3.85928e6 2.37551
306306 −61236.0 −0.0373855
307307 1.04564e6 0.633191 0.316595 0.948561i 0.397460π-0.397460\pi
0.316595 + 0.948561i 0.397460π0.397460\pi
308308 0 0
309309 −1.18591e6 −0.706572
310310 −37440.0 −0.0221275
311311 −1.83718e6 −1.07708 −0.538542 0.842598i 0.681025π-0.681025\pi
−0.538542 + 0.842598i 0.681025π0.681025\pi
312312 668304. 0.388676
313313 365494. 0.210872 0.105436 0.994426i 0.466376π-0.466376\pi
0.105436 + 0.994426i 0.466376π0.466376\pi
314314 779268. 0.446029
315315 0 0
316316 −263104. −0.148221
317317 −28338.0 −0.0158388 −0.00791938 0.999969i 0.502521π-0.502521\pi
−0.00791938 + 0.999969i 0.502521π0.502521\pi
318318 518076. 0.287293
319319 −2.41625e6 −1.32943
320320 −2.16154e6 −1.18001
321321 −1.16024e6 −0.628473
322322 0 0
323323 −338184. −0.180363
324324 26244.0 0.0138889
325325 1.30788e6 0.686845
326326 −3.33170e6 −1.73629
327327 −908802. −0.470002
328328 −1.33762e6 −0.686510
329329 0 0
330330 1.87013e6 0.945337
331331 1.93392e6 0.970214 0.485107 0.874455i 0.338781π-0.338781\pi
0.485107 + 0.874455i 0.338781π0.338781\pi
332332 −160752. −0.0800408
333333 −440154. −0.217517
334334 261072. 0.128054
335335 4.62977e6 2.25397
336336 0 0
337337 −1.88817e6 −0.905664 −0.452832 0.891596i 0.649586π-0.649586\pi
−0.452832 + 0.891596i 0.649586π0.649586\pi
338338 1.05557e6 0.502570
339339 1.98131e6 0.936384
340340 −39312.0 −0.0184428
341341 −35520.0 −0.0165420
342342 1.30442e6 0.603050
343343 0 0
344344 −1.93603e6 −0.882097
345345 −2.94840e6 −1.33364
346346 −109980. −0.0493882
347347 2.91937e6 1.30156 0.650782 0.759264i 0.274441π-0.274441\pi
0.650782 + 0.759264i 0.274441π0.274441\pi
348348 −195912. −0.0867187
349349 780682. 0.343092 0.171546 0.985176i 0.445124π-0.445124\pi
0.171546 + 0.985176i 0.445124π0.445124\pi
350350 0 0
351351 322218. 0.139599
352352 639360. 0.275036
353353 −1.33437e6 −0.569954 −0.284977 0.958534i 0.591986π-0.591986\pi
−0.284977 + 0.958534i 0.591986π0.591986\pi
354354 1.48457e6 0.629639
355355 −2.49912e6 −1.05249
356356 31896.0 0.0133386
357357 0 0
358358 919944. 0.379362
359359 1.01743e6 0.416648 0.208324 0.978060i 0.433199π-0.433199\pi
0.208324 + 0.978060i 0.433199π0.433199\pi
360360 −1.06142e6 −0.431651
361361 4.72776e6 1.90936
362362 −2.29240e6 −0.919429
363363 324765. 0.129361
364364 0 0
365365 −4.82399e6 −1.89528
366366 2.67181e6 1.04257
367367 −837680. −0.324648 −0.162324 0.986737i 0.551899π-0.551899\pi
−0.162324 + 0.986737i 0.551899π0.551899\pi
368368 −4.77120e6 −1.83657
369369 −644922. −0.246571
370370 −2.54311e6 −0.965742
371371 0 0
372372 −2880.00 −0.00107903
373373 −1.51993e6 −0.565655 −0.282827 0.959171i 0.591272π-0.591272\pi
−0.282827 + 0.959171i 0.591272π0.591272\pi
374374 −335664. −0.124087
375375 116532. 0.0427924
376376 2.33856e6 0.853059
377377 −2.40536e6 −0.871620
378378 0 0
379379 2.64465e6 0.945737 0.472869 0.881133i 0.343219π-0.343219\pi
0.472869 + 0.881133i 0.343219π0.343219\pi
380380 837408. 0.297494
381381 −668880. −0.236067
382382 1.64045e6 0.575180
383383 −2.01336e6 −0.701333 −0.350667 0.936500i 0.614045π-0.614045\pi
−0.350667 + 0.936500i 0.614045π0.614045\pi
384384 −1.91117e6 −0.661410
385385 0 0
386386 −921612. −0.314833
387387 −933444. −0.316819
388388 574648. 0.193786
389389 −726234. −0.243334 −0.121667 0.992571i 0.538824π-0.538824\pi
−0.121667 + 0.992571i 0.538824π0.538824\pi
390390 1.86170e6 0.619796
391391 529200. 0.175056
392392 0 0
393393 1.39784e6 0.456538
394394 −926532. −0.300691
395395 5.13053e6 1.65451
396396 143856. 0.0460988
397397 −4.57578e6 −1.45710 −0.728549 0.684993i 0.759805π-0.759805\pi
−0.728549 + 0.684993i 0.759805π0.759805\pi
398398 −2.20114e6 −0.696529
399399 0 0
400400 −3.36142e6 −1.05045
401401 −33870.0 −0.0105185 −0.00525926 0.999986i 0.501674π-0.501674\pi
−0.00525926 + 0.999986i 0.501674π0.501674\pi
402402 3.20522e6 0.989221
403403 −35360.0 −0.0108455
404404 10824.0 0.00329940
405405 −511758. −0.155034
406406 0 0
407407 −2.41270e6 −0.721966
408408 190512. 0.0566594
409409 5.86178e6 1.73269 0.866346 0.499444i 0.166462π-0.166462\pi
0.866346 + 0.499444i 0.166462π0.166462\pi
410410 −3.72622e6 −1.09473
411411 −2.37821e6 −0.694459
412412 −527072. −0.152977
413413 0 0
414414 −2.04120e6 −0.585308
415415 3.13466e6 0.893451
416416 636480. 0.180323
417417 −2.02151e6 −0.569292
418418 7.15018e6 2.00159
419419 −302748. −0.0842454 −0.0421227 0.999112i 0.513412π-0.513412\pi
−0.0421227 + 0.999112i 0.513412π0.513412\pi
420420 0 0
421421 −5.36708e6 −1.47582 −0.737909 0.674900i 0.764187π-0.764187\pi
−0.737909 + 0.674900i 0.764187π0.764187\pi
422422 −3.12146e6 −0.853252
423423 1.12752e6 0.306389
424424 −1.61179e6 −0.435406
425425 372834. 0.100125
426426 −1.73016e6 −0.461915
427427 0 0
428428 −515664. −0.136068
429429 1.76623e6 0.463345
430430 −5.39323e6 −1.40662
431431 1.17706e6 0.305214 0.152607 0.988287i 0.451233π-0.451233\pi
0.152607 + 0.988287i 0.451233π0.451233\pi
432432 −828144. −0.213499
433433 3.66249e6 0.938766 0.469383 0.882995i 0.344476π-0.344476\pi
0.469383 + 0.882995i 0.344476π0.344476\pi
434434 0 0
435435 3.82028e6 0.967994
436436 −403912. −0.101758
437437 −1.12728e7 −2.82376
438438 −3.33968e6 −0.831802
439439 2.53674e6 0.628225 0.314113 0.949386i 0.398293π-0.398293\pi
0.314113 + 0.949386i 0.398293π0.398293\pi
440440 −5.81818e6 −1.43270
441441 0 0
442442 −334152. −0.0813558
443443 6.01504e6 1.45623 0.728113 0.685457i 0.240397π-0.240397\pi
0.728113 + 0.685457i 0.240397π0.240397\pi
444444 −195624. −0.0470939
445445 −621972. −0.148892
446446 1.82842e6 0.435249
447447 −738666. −0.174856
448448 0 0
449449 5.65965e6 1.32487 0.662436 0.749119i 0.269523π-0.269523\pi
0.662436 + 0.749119i 0.269523π0.269523\pi
450450 −1.43807e6 −0.334773
451451 −3.53513e6 −0.818397
452452 880584. 0.202733
453453 −2.58329e6 −0.591463
454454 1.73153e6 0.394267
455455 0 0
456456 −4.05821e6 −0.913949
457457 −6.46159e6 −1.44727 −0.723634 0.690184i 0.757530π-0.757530\pi
−0.723634 + 0.690184i 0.757530π0.757530\pi
458458 4.63314e6 1.03208
459459 91854.0 0.0203501
460460 −1.31040e6 −0.288742
461461 3.37353e6 0.739320 0.369660 0.929167i 0.379474π-0.379474\pi
0.369660 + 0.929167i 0.379474π0.379474\pi
462462 0 0
463463 −4.54974e6 −0.986358 −0.493179 0.869928i 0.664165π-0.664165\pi
−0.493179 + 0.869928i 0.664165π0.664165\pi
464464 6.18211e6 1.33304
465465 56160.0 0.0120447
466466 −1.51340e6 −0.322842
467467 −2.01136e6 −0.426773 −0.213386 0.976968i 0.568449π-0.568449\pi
−0.213386 + 0.976968i 0.568449π0.568449\pi
468468 143208. 0.0302240
469469 0 0
470470 6.51456e6 1.36032
471471 −1.16890e6 −0.242787
472472 −4.61866e6 −0.954247
473473 −5.11666e6 −1.05156
474474 3.55190e6 0.726132
475475 −7.94196e6 −1.61508
476476 0 0
477477 −777114. −0.156383
478478 8.70682e6 1.74297
479479 7.60402e6 1.51427 0.757137 0.653257i 0.226598π-0.226598\pi
0.757137 + 0.653257i 0.226598π0.226598\pi
480480 −1.01088e6 −0.200261
481481 −2.40183e6 −0.473347
482482 −878388. −0.172214
483483 0 0
484484 144340. 0.0280074
485485 −1.12056e7 −2.16313
486486 −354294. −0.0680414
487487 673112. 0.128607 0.0643035 0.997930i 0.479517π-0.479517\pi
0.0643035 + 0.997930i 0.479517π0.479517\pi
488488 −8.31230e6 −1.58005
489489 4.99756e6 0.945117
490490 0 0
491491 −2.47170e6 −0.462692 −0.231346 0.972872i 0.574313π-0.574313\pi
−0.231346 + 0.972872i 0.574313π0.574313\pi
492492 −286632. −0.0533841
493493 −685692. −0.127061
494494 7.11797e6 1.31232
495495 −2.80519e6 −0.514576
496496 90880.0 0.0165869
497497 0 0
498498 2.17015e6 0.392118
499499 6.08152e6 1.09335 0.546677 0.837343i 0.315892π-0.315892\pi
0.546677 + 0.837343i 0.315892π0.315892\pi
500500 51792.0 0.00926483
501501 −391608. −0.0697039
502502 3.64716e6 0.645945
503503 846216. 0.149129 0.0745644 0.997216i 0.476243π-0.476243\pi
0.0745644 + 0.997216i 0.476243π0.476243\pi
504504 0 0
505505 −211068. −0.0368293
506506 −1.11888e7 −1.94271
507507 −1.58336e6 −0.273565
508508 −297280. −0.0511101
509509 7.66785e6 1.31183 0.655917 0.754833i 0.272282π-0.272282\pi
0.655917 + 0.754833i 0.272282π0.272282\pi
510510 530712. 0.0903511
511511 0 0
512512 4.47130e6 0.753804
513513 −1.95664e6 −0.328259
514514 573516. 0.0957498
515515 1.02779e7 1.70760
516516 −414864. −0.0685933
517517 6.18048e6 1.01694
518518 0 0
519519 164970. 0.0268835
520520 −5.79197e6 −0.939329
521521 9.68938e6 1.56387 0.781937 0.623357i 0.214232π-0.214232\pi
0.781937 + 0.623357i 0.214232π0.214232\pi
522522 2.64481e6 0.424833
523523 7.51678e6 1.20165 0.600824 0.799381i 0.294839π-0.294839\pi
0.600824 + 0.799381i 0.294839π0.294839\pi
524524 621264. 0.0988435
525525 0 0
526526 1.32021e7 2.08055
527527 −10080.0 −0.00158101
528528 −4.53946e6 −0.708629
529529 1.12037e7 1.74069
530530 −4.48999e6 −0.694314
531531 −2.22685e6 −0.342732
532532 0 0
533533 −3.51920e6 −0.536570
534534 −430596. −0.0653457
535535 1.00554e7 1.51886
536536 −9.97181e6 −1.49921
537537 −1.37992e6 −0.206499
538538 1.06215e7 1.58208
539539 0 0
540540 −227448. −0.0335659
541541 7.34325e6 1.07869 0.539343 0.842086i 0.318673π-0.318673\pi
0.539343 + 0.842086i 0.318673π0.318673\pi
542542 −1.34102e6 −0.196082
543543 3.43859e6 0.500474
544544 181440. 0.0262867
545545 7.87628e6 1.13587
546546 0 0
547547 2.18296e6 0.311945 0.155973 0.987761i 0.450149π-0.450149\pi
0.155973 + 0.987761i 0.450149π0.450149\pi
548548 −1.05698e6 −0.150355
549549 −4.00772e6 −0.567501
550550 −7.88278e6 −1.11115
551551 1.46063e7 2.04957
552552 6.35040e6 0.887061
553553 0 0
554554 2.05667e6 0.284702
555555 3.81467e6 0.525683
556556 −898448. −0.123255
557557 1.25466e7 1.71351 0.856755 0.515724i 0.172477π-0.172477\pi
0.856755 + 0.515724i 0.172477π0.172477\pi
558558 38880.0 0.00528617
559559 −5.09361e6 −0.689439
560560 0 0
561561 503496. 0.0675443
562562 −2.88227e6 −0.384940
563563 −5.15972e6 −0.686050 −0.343025 0.939326i 0.611451π-0.611451\pi
−0.343025 + 0.939326i 0.611451π0.611451\pi
564564 501120. 0.0663352
565565 −1.71714e7 −2.26300
566566 −179880. −0.0236016
567567 0 0
568568 5.38272e6 0.700053
569569 1.17452e7 1.52083 0.760414 0.649439i 0.224996π-0.224996\pi
0.760414 + 0.649439i 0.224996π0.224996\pi
570570 −1.13050e7 −1.45742
571571 −7.54728e6 −0.968725 −0.484362 0.874867i 0.660948π-0.660948\pi
−0.484362 + 0.874867i 0.660948π0.660948\pi
572572 784992. 0.100317
573573 −2.46067e6 −0.313089
574574 0 0
575575 1.24278e7 1.56756
576576 2.24467e6 0.281901
577577 −9.28483e6 −1.16101 −0.580503 0.814258i 0.697144π-0.697144\pi
−0.580503 + 0.814258i 0.697144π0.697144\pi
578578 8.42389e6 1.04880
579579 1.38242e6 0.171373
580580 1.69790e6 0.209577
581581 0 0
582582 −7.75775e6 −0.949354
583583 −4.25974e6 −0.519053
584584 1.03901e7 1.26063
585585 −2.79256e6 −0.337374
586586 −1.18840e6 −0.142961
587587 −1.47623e6 −0.176831 −0.0884155 0.996084i 0.528180π-0.528180\pi
−0.0884155 + 0.996084i 0.528180π0.528180\pi
588588 0 0
589589 214720. 0.0255026
590590 −1.28663e7 −1.52168
591591 1.38980e6 0.163675
592592 6.17302e6 0.723925
593593 1.24007e7 1.44813 0.724067 0.689729i 0.242270π-0.242270\pi
0.724067 + 0.689729i 0.242270π0.242270\pi
594594 −1.94206e6 −0.225837
595595 0 0
596596 −328296. −0.0378573
597597 3.30170e6 0.379142
598598 −1.11384e7 −1.27371
599599 −3.69127e6 −0.420348 −0.210174 0.977664i 0.567403π-0.567403\pi
−0.210174 + 0.977664i 0.567403π0.567403\pi
600600 4.47401e6 0.507363
601601 −9.12223e6 −1.03018 −0.515092 0.857135i 0.672242π-0.672242\pi
−0.515092 + 0.857135i 0.672242π0.672242\pi
602602 0 0
603603 −4.80784e6 −0.538464
604604 −1.14813e6 −0.128055
605605 −2.81463e6 −0.312632
606606 −146124. −0.0161637
607607 5.67914e6 0.625620 0.312810 0.949816i 0.398730π-0.398730\pi
0.312810 + 0.949816i 0.398730π0.398730\pi
608608 −3.86496e6 −0.424020
609609 0 0
610610 −2.31557e7 −2.51961
611611 6.15264e6 0.666743
612612 40824.0 0.00440592
613613 −1.40106e7 −1.50593 −0.752966 0.658060i 0.771377π-0.771377\pi
−0.752966 + 0.658060i 0.771377π0.771377\pi
614614 −6.27382e6 −0.671600
615615 5.58932e6 0.595897
616616 0 0
617617 −253686. −0.0268277 −0.0134139 0.999910i 0.504270π-0.504270\pi
−0.0134139 + 0.999910i 0.504270π0.504270\pi
618618 7.11547e6 0.749433
619619 −4.30034e6 −0.451103 −0.225552 0.974231i 0.572418π-0.572418\pi
−0.225552 + 0.974231i 0.572418π0.572418\pi
620620 24960.0 0.00260775
621621 3.06180e6 0.318602
622622 1.10231e7 1.14242
623623 0 0
624624 −4.51901e6 −0.464603
625625 −1.02568e7 −1.05030
626626 −2.19296e6 −0.223664
627627 −1.07253e7 −1.08953
628628 −519512. −0.0525650
629629 −684684. −0.0690023
630630 0 0
631631 1.04150e7 1.04132 0.520662 0.853763i 0.325685π-0.325685\pi
0.520662 + 0.853763i 0.325685π0.325685\pi
632632 −1.10504e7 −1.10048
633633 4.68220e6 0.464451
634634 170028. 0.0167995
635635 5.79696e6 0.570514
636636 −345384. −0.0338579
637637 0 0
638638 1.44975e7 1.41007
639639 2.59524e6 0.251435
640640 1.65635e7 1.59846
641641 4.52714e6 0.435190 0.217595 0.976039i 0.430179π-0.430179\pi
0.217595 + 0.976039i 0.430179π0.430179\pi
642642 6.96146e6 0.666596
643643 −1.49687e7 −1.42776 −0.713882 0.700266i 0.753065π-0.753065\pi
−0.713882 + 0.700266i 0.753065π0.753065\pi
644644 0 0
645645 8.08985e6 0.765669
646646 2.02910e6 0.191304
647647 1.73020e7 1.62493 0.812465 0.583010i 0.198125π-0.198125\pi
0.812465 + 0.583010i 0.198125π0.198125\pi
648648 1.10225e6 0.103120
649649 −1.22064e7 −1.13757
650650 −7.84727e6 −0.728509
651651 0 0
652652 2.22114e6 0.204624
653653 4.07470e6 0.373949 0.186975 0.982365i 0.440132π-0.440132\pi
0.186975 + 0.982365i 0.440132π0.440132\pi
654654 5.45281e6 0.498513
655655 −1.21146e7 −1.10334
656656 9.04483e6 0.820618
657657 5.00953e6 0.452776
658658 0 0
659659 −3.79475e6 −0.340384 −0.170192 0.985411i 0.554439π-0.554439\pi
−0.170192 + 0.985411i 0.554439π0.554439\pi
660660 −1.24675e6 −0.111409
661661 −1.64261e7 −1.46228 −0.731142 0.682225i 0.761012π-0.761012\pi
−0.731142 + 0.682225i 0.761012π0.761012\pi
662662 −1.16035e7 −1.02907
663663 501228. 0.0442845
664664 −6.75158e6 −0.594272
665665 0 0
666666 2.64092e6 0.230712
667667 −2.28564e7 −1.98927
668668 −174048. −0.0150913
669669 −2.74262e6 −0.236920
670670 −2.77786e7 −2.39069
671671 −2.19682e7 −1.88360
672672 0 0
673673 5.50675e6 0.468660 0.234330 0.972157i 0.424710π-0.424710\pi
0.234330 + 0.972157i 0.424710π0.424710\pi
674674 1.13290e7 0.960602
675675 2.15711e6 0.182227
676676 −703716. −0.0592285
677677 −1.83957e7 −1.54257 −0.771286 0.636488i 0.780386π-0.780386\pi
−0.771286 + 0.636488i 0.780386π0.780386\pi
678678 −1.18879e7 −0.993185
679679 0 0
680680 −1.65110e6 −0.136931
681681 −2.59729e6 −0.214612
682682 213120. 0.0175454
683683 1.75835e6 0.144229 0.0721146 0.997396i 0.477025π-0.477025\pi
0.0721146 + 0.997396i 0.477025π0.477025\pi
684684 −869616. −0.0710702
685685 2.06112e7 1.67833
686686 0 0
687687 −6.94971e6 −0.561791
688688 1.30913e7 1.05441
689689 −4.24055e6 −0.340309
690690 1.76904e7 1.41454
691691 5.36314e6 0.427291 0.213646 0.976911i 0.431466π-0.431466\pi
0.213646 + 0.976911i 0.431466π0.431466\pi
692692 73320.0 0.00582046
693693 0 0
694694 −1.75162e7 −1.38052
695695 1.75197e7 1.37583
696696 −8.22830e6 −0.643854
697697 −1.00321e6 −0.0782187
698698 −4.68409e6 −0.363904
699699 2.27011e6 0.175733
700700 0 0
701701 −2.12606e7 −1.63411 −0.817054 0.576561i 0.804394π-0.804394\pi
−0.817054 + 0.576561i 0.804394π0.804394\pi
702702 −1.93331e6 −0.148067
703703 1.45849e7 1.11305
704704 1.23041e7 0.935662
705705 −9.77184e6 −0.740463
706706 8.00622e6 0.604527
707707 0 0
708708 −989712. −0.0742037
709709 2.07729e6 0.155196 0.0775980 0.996985i 0.475275π-0.475275\pi
0.0775980 + 0.996985i 0.475275π0.475275\pi
710710 1.49947e7 1.11633
711711 −5.32786e6 −0.395256
712712 1.33963e6 0.0990343
713713 −336000. −0.0247523
714714 0 0
715715 −1.53073e7 −1.11979
716716 −613296. −0.0447082
717717 −1.30602e7 −0.948752
718718 −6.10459e6 −0.441922
719719 −4.23619e6 −0.305600 −0.152800 0.988257i 0.548829π-0.548829\pi
−0.152800 + 0.988257i 0.548829π0.548829\pi
720720 7.17725e6 0.515973
721721 0 0
722722 −2.83665e7 −2.02518
723723 1.31758e6 0.0937415
724724 1.52826e6 0.108356
725725 −1.61029e7 −1.13778
726726 −1.94859e6 −0.137208
727727 −2.14524e7 −1.50536 −0.752678 0.658389i 0.771238π-0.771238\pi
−0.752678 + 0.658389i 0.771238π0.771238\pi
728728 0 0
729729 531441. 0.0370370
730730 2.89439e7 2.01025
731731 −1.45202e6 −0.100503
732732 −1.78121e6 −0.122867
733733 1.48892e7 1.02355 0.511777 0.859118i 0.328987π-0.328987\pi
0.511777 + 0.859118i 0.328987π0.328987\pi
734734 5.02608e6 0.344341
735735 0 0
736736 6.04800e6 0.411545
737737 −2.63541e7 −1.78722
738738 3.86953e6 0.261528
739739 6.99324e6 0.471050 0.235525 0.971868i 0.424319π-0.424319\pi
0.235525 + 0.971868i 0.424319π0.424319\pi
740740 1.69541e6 0.113814
741741 −1.06770e7 −0.714335
742742 0 0
743743 1.90428e6 0.126549 0.0632745 0.997996i 0.479846π-0.479846\pi
0.0632745 + 0.997996i 0.479846π0.479846\pi
744744 −120960. −0.00801142
745745 6.40177e6 0.422581
746746 9.11958e6 0.599968
747747 −3.25523e6 −0.213442
748748 223776. 0.0146238
749749 0 0
750750 −699192. −0.0453882
751751 1.95361e7 1.26398 0.631988 0.774978i 0.282239π-0.282239\pi
0.631988 + 0.774978i 0.282239π0.282239\pi
752752 −1.58131e7 −1.01970
753753 −5.47074e6 −0.351608
754754 1.44322e7 0.924493
755755 2.23885e7 1.42941
756756 0 0
757757 1.25183e6 0.0793973 0.0396986 0.999212i 0.487360π-0.487360\pi
0.0396986 + 0.999212i 0.487360π0.487360\pi
758758 −1.58679e7 −1.00311
759759 1.67832e7 1.05748
760760 3.51711e7 2.20878
761761 −2.04472e7 −1.27989 −0.639944 0.768422i 0.721042π-0.721042\pi
−0.639944 + 0.768422i 0.721042π0.721042\pi
762762 4.01328e6 0.250387
763763 0 0
764764 −1.09363e6 −0.0677857
765765 −796068. −0.0491809
766766 1.20802e7 0.743876
767767 −1.21515e7 −0.745831
768768 3.48595e6 0.213264
769769 −2.21064e6 −0.134804 −0.0674020 0.997726i 0.521471π-0.521471\pi
−0.0674020 + 0.997726i 0.521471π0.521471\pi
770770 0 0
771771 −860274. −0.0521196
772772 614408. 0.0371034
773773 −1.29151e7 −0.777405 −0.388703 0.921363i 0.627077π-0.627077\pi
−0.388703 + 0.921363i 0.627077π0.627077\pi
774774 5.60066e6 0.336037
775775 −236720. −0.0141573
776776 2.41352e7 1.43879
777777 0 0
778778 4.35740e6 0.258095
779779 2.13700e7 1.26171
780780 −1.24114e6 −0.0730437
781781 1.42258e7 0.834541
782782 −3.17520e6 −0.185675
783783 −3.96722e6 −0.231250
784784 0 0
785785 1.01305e7 0.586754
786786 −8.38706e6 −0.484232
787787 1.35499e7 0.779830 0.389915 0.920851i 0.372504π-0.372504\pi
0.389915 + 0.920851i 0.372504π0.372504\pi
788788 617688. 0.0354367
789789 −1.98031e7 −1.13251
790790 −3.07832e7 −1.75487
791791 0 0
792792 6.04195e6 0.342266
793793 −2.18693e7 −1.23496
794794 2.74547e7 1.54549
795795 6.73499e6 0.377937
796796 1.46742e6 0.0820867
797797 2.45956e7 1.37155 0.685776 0.727813i 0.259463π-0.259463\pi
0.685776 + 0.727813i 0.259463π0.259463\pi
798798 0 0
799799 1.75392e6 0.0971948
800800 4.26096e6 0.235387
801801 645894. 0.0355697
802802 203220. 0.0111566
803803 2.74596e7 1.50282
804804 −2.13682e6 −0.116581
805805 0 0
806806 212160. 0.0115034
807807 −1.59322e7 −0.861177
808808 454608. 0.0244968
809809 1.55237e7 0.833920 0.416960 0.908925i 0.363095π-0.363095\pi
0.416960 + 0.908925i 0.363095π0.363095\pi
810810 3.07055e6 0.164438
811811 2.66262e7 1.42153 0.710766 0.703429i 0.248349π-0.248349\pi
0.710766 + 0.703429i 0.248349π0.248349\pi
812812 0 0
813813 2.01154e6 0.106734
814814 1.44762e7 0.765760
815815 −4.33122e7 −2.28410
816816 −1.28822e6 −0.0677276
817817 3.09304e7 1.62118
818818 −3.51707e7 −1.83780
819819 0 0
820820 2.48414e6 0.129016
821821 −1.23891e7 −0.641477 −0.320739 0.947168i 0.603931π-0.603931\pi
−0.320739 + 0.947168i 0.603931π0.603931\pi
822822 1.42693e7 0.736585
823823 −3.65630e6 −0.188166 −0.0940831 0.995564i 0.529992π-0.529992\pi
−0.0940831 + 0.995564i 0.529992π0.529992\pi
824824 −2.21370e7 −1.13580
825825 1.18242e7 0.604833
826826 0 0
827827 2.80463e7 1.42597 0.712987 0.701178i 0.247342π-0.247342\pi
0.712987 + 0.701178i 0.247342π0.247342\pi
828828 1.36080e6 0.0689792
829829 −2.11153e7 −1.06712 −0.533558 0.845763i 0.679145π-0.679145\pi
−0.533558 + 0.845763i 0.679145π0.679145\pi
830830 −1.88080e7 −0.947648
831831 −3.08500e6 −0.154972
832832 1.22487e7 0.613454
833833 0 0
834834 1.21290e7 0.603826
835835 3.39394e6 0.168456
836836 −4.76678e6 −0.235890
837837 −58320.0 −0.00287742
838838 1.81649e6 0.0893557
839839 −1.33947e7 −0.656944 −0.328472 0.944514i 0.606534π-0.606534\pi
−0.328472 + 0.944514i 0.606534π0.606534\pi
840840 0 0
841841 9.10422e6 0.443867
842842 3.22025e7 1.56534
843843 4.32340e6 0.209535
844844 2.08098e6 0.100557
845845 1.37225e7 0.661135
846846 −6.76512e6 −0.324975
847847 0 0
848848 1.08988e7 0.520461
849849 269820. 0.0128471
850850 −2.23700e6 −0.106199
851851 −2.28228e7 −1.08030
852852 1.15344e6 0.0544372
853853 −3.01513e7 −1.41884 −0.709420 0.704786i 0.751043π-0.751043\pi
−0.709420 + 0.704786i 0.751043π0.751043\pi
854854 0 0
855855 1.69575e7 0.793317
856856 −2.16579e7 −1.01026
857857 −2.39894e7 −1.11575 −0.557875 0.829925i 0.688383π-0.688383\pi
−0.557875 + 0.829925i 0.688383π0.688383\pi
858858 −1.05974e7 −0.491452
859859 8.87576e6 0.410414 0.205207 0.978719i 0.434213π-0.434213\pi
0.205207 + 0.978719i 0.434213π0.434213\pi
860860 3.59549e6 0.165772
861861 0 0
862862 −7.06234e6 −0.323728
863863 −8.71286e6 −0.398230 −0.199115 0.979976i 0.563807π-0.563807\pi
−0.199115 + 0.979976i 0.563807π0.563807\pi
864864 1.04976e6 0.0478416
865865 −1.42974e6 −0.0649706
866866 −2.19750e7 −0.995711
867867 −1.26358e7 −0.570895
868868 0 0
869869 −2.92045e7 −1.31190
870870 −2.29217e7 −1.02671
871871 −2.62354e7 −1.17177
872872 −1.69643e7 −0.755518
873873 1.16366e7 0.516763
874874 6.76368e7 2.99505
875875 0 0
876876 2.22646e6 0.0980288
877877 −2.95788e7 −1.29862 −0.649310 0.760524i 0.724942π-0.724942\pi
−0.649310 + 0.760524i 0.724942π0.724942\pi
878878 −1.52205e7 −0.666333
879879 1.78259e6 0.0778180
880880 3.93420e7 1.71257
881881 −2.45670e7 −1.06638 −0.533190 0.845995i 0.679007π-0.679007\pi
−0.533190 + 0.845995i 0.679007π0.679007\pi
882882 0 0
883883 1.45682e7 0.628788 0.314394 0.949293i 0.398199π-0.398199\pi
0.314394 + 0.949293i 0.398199π0.398199\pi
884884 222768. 0.00958787
885885 1.92994e7 0.828295
886886 −3.60902e7 −1.54456
887887 −1.61714e7 −0.690141 −0.345070 0.938577i 0.612145π-0.612145\pi
−0.345070 + 0.938577i 0.612145π0.612145\pi
888888 −8.21621e6 −0.349654
889889 0 0
890890 3.73183e6 0.157924
891891 2.91308e6 0.122930
892892 −1.21894e6 −0.0512946
893893 −3.73613e7 −1.56781
894894 4.43200e6 0.185462
895895 1.19593e7 0.499054
896896 0 0
897897 1.67076e7 0.693319
898898 −3.39579e7 −1.40524
899899 435360. 0.0179659
900900 958716. 0.0394533
901901 −1.20884e6 −0.0496087
902902 2.12108e7 0.868041
903903 0 0
904904 3.69845e7 1.50522
905905 −2.98011e7 −1.20952
906906 1.54997e7 0.627341
907907 3.14446e7 1.26919 0.634596 0.772844i 0.281167π-0.281167\pi
0.634596 + 0.772844i 0.281167π0.281167\pi
908908 −1.15435e6 −0.0464648
909909 219186. 0.00879839
910910 0 0
911911 1.51427e7 0.604514 0.302257 0.953227i 0.402260π-0.402260\pi
0.302257 + 0.953227i 0.402260π0.402260\pi
912912 2.74412e7 1.09249
913913 −1.78435e7 −0.708439
914914 3.87695e7 1.53506
915915 3.47336e7 1.37150
916916 −3.08876e6 −0.121631
917917 0 0
918918 −551124. −0.0215845
919919 4.14876e7 1.62043 0.810214 0.586134i 0.199351π-0.199351\pi
0.810214 + 0.586134i 0.199351π0.199351\pi
920920 −5.50368e7 −2.14380
921921 9.41072e6 0.365573
922922 −2.02412e7 −0.784167
923923 1.41617e7 0.547155
924924 0 0
925925 −1.60792e7 −0.617889
926926 2.72985e7 1.04619
927927 −1.06732e7 −0.407939
928928 −7.83648e6 −0.298711
929929 1.78495e7 0.678556 0.339278 0.940686i 0.389817π-0.389817\pi
0.339278 + 0.940686i 0.389817π0.389817\pi
930930 −336960. −0.0127753
931931 0 0
932932 1.00894e6 0.0380473
933933 −1.65346e7 −0.621855
934934 1.20681e7 0.452661
935935 −4.36363e6 −0.163237
936936 6.01474e6 0.224402
937937 −2.96399e7 −1.10288 −0.551439 0.834215i 0.685921π-0.685921\pi
−0.551439 + 0.834215i 0.685921π0.685921\pi
938938 0 0
939939 3.28945e6 0.121747
940940 −4.34304e6 −0.160315
941941 3.22282e7 1.18648 0.593242 0.805024i 0.297848π-0.297848\pi
0.593242 + 0.805024i 0.297848π0.297848\pi
942942 7.01341e6 0.257515
943943 −3.34404e7 −1.22459
944944 3.12309e7 1.14066
945945 0 0
946946 3.06999e7 1.11535
947947 4.84885e7 1.75697 0.878484 0.477772i 0.158556π-0.158556\pi
0.878484 + 0.477772i 0.158556π0.158556\pi
948948 −2.36794e6 −0.0855754
949949 2.73359e7 0.985300
950950 4.76517e7 1.71305
951951 −255042. −0.00914451
952952 0 0
953953 −2.03264e7 −0.724983 −0.362491 0.931987i 0.618074π-0.618074\pi
−0.362491 + 0.931987i 0.618074π0.618074\pi
954954 4.66268e6 0.165869
955955 2.13258e7 0.756654
956956 −5.80454e6 −0.205411
957957 −2.17462e7 −0.767546
958958 −4.56241e7 −1.60613
959959 0 0
960960 −1.94538e7 −0.681282
961961 −2.86228e7 −0.999776
962962 1.44110e7 0.502060
963963 −1.04422e7 −0.362849
964964 585592. 0.0202956
965965 −1.19810e7 −0.414165
966966 0 0
967967 −3.66292e6 −0.125968 −0.0629841 0.998015i 0.520062π-0.520062\pi
−0.0629841 + 0.998015i 0.520062π0.520062\pi
968968 6.06228e6 0.207945
969969 −3.04366e6 −0.104132
970970 6.72338e7 2.29434
971971 −1.48741e6 −0.0506271 −0.0253136 0.999680i 0.508058π-0.508058\pi
−0.0253136 + 0.999680i 0.508058π0.508058\pi
972972 236196. 0.00801875
973973 0 0
974974 −4.03867e6 −0.136408
975975 1.17709e7 0.396550
976976 5.62070e7 1.88871
977977 4.07930e7 1.36725 0.683627 0.729831i 0.260401π-0.260401\pi
0.683627 + 0.729831i 0.260401π0.260401\pi
978978 −2.99853e7 −1.00245
979979 3.54046e6 0.118060
980980 0 0
981981 −8.17922e6 −0.271356
982982 1.48302e7 0.490759
983983 9.26326e6 0.305759 0.152880 0.988245i 0.451145π-0.451145\pi
0.152880 + 0.988245i 0.451145π0.451145\pi
984984 −1.20385e7 −0.396357
985985 −1.20449e7 −0.395561
986986 4.11415e6 0.134768
987987 0 0
988988 −4.74531e6 −0.154658
989989 −4.84008e7 −1.57348
990990 1.68312e7 0.545790
991991 −5.22051e7 −1.68861 −0.844303 0.535866i 0.819985π-0.819985\pi
−0.844303 + 0.535866i 0.819985π0.819985\pi
992992 −115200. −0.00371684
993993 1.74052e7 0.560153
994994 0 0
995995 −2.86148e7 −0.916289
996996 −1.44677e6 −0.0462116
997997 1.86609e7 0.594560 0.297280 0.954790i 0.403921π-0.403921\pi
0.297280 + 0.954790i 0.403921π0.403921\pi
998998 −3.64891e7 −1.15968
999999 −3.96139e6 −0.125584
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.6.a.b.1.1 1
3.2 odd 2 441.6.a.j.1.1 1
7.2 even 3 147.6.e.i.67.1 2
7.3 odd 6 147.6.e.j.79.1 2
7.4 even 3 147.6.e.i.79.1 2
7.5 odd 6 147.6.e.j.67.1 2
7.6 odd 2 21.6.a.a.1.1 1
21.20 even 2 63.6.a.d.1.1 1
28.27 even 2 336.6.a.r.1.1 1
35.13 even 4 525.6.d.b.274.2 2
35.27 even 4 525.6.d.b.274.1 2
35.34 odd 2 525.6.a.d.1.1 1
84.83 odd 2 1008.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.a.1.1 1 7.6 odd 2
63.6.a.d.1.1 1 21.20 even 2
147.6.a.b.1.1 1 1.1 even 1 trivial
147.6.e.i.67.1 2 7.2 even 3
147.6.e.i.79.1 2 7.4 even 3
147.6.e.j.67.1 2 7.5 odd 6
147.6.e.j.79.1 2 7.3 odd 6
336.6.a.r.1.1 1 28.27 even 2
441.6.a.j.1.1 1 3.2 odd 2
525.6.a.d.1.1 1 35.34 odd 2
525.6.d.b.274.1 2 35.27 even 4
525.6.d.b.274.2 2 35.13 even 4
1008.6.a.c.1.1 1 84.83 odd 2