Properties

Label 147.6.e.i.79.1
Level $147$
Weight $6$
Character 147.79
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.6.e.i.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.00000 - 5.19615i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(39.0000 - 67.5500i) q^{5} -54.0000 q^{6} +168.000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-234.000 - 405.300i) q^{10} +(-222.000 - 384.515i) q^{11} +(-18.0000 + 31.1769i) q^{12} +442.000 q^{13} -702.000 q^{15} +(568.000 - 983.805i) q^{16} +(-63.0000 - 109.119i) q^{17} +(243.000 + 420.888i) q^{18} +(1342.00 - 2324.41i) q^{19} -312.000 q^{20} -2664.00 q^{22} +(-2100.00 + 3637.31i) q^{23} +(-756.000 - 1309.43i) q^{24} +(-1479.50 - 2562.57i) q^{25} +(1326.00 - 2296.70i) q^{26} +729.000 q^{27} -5442.00 q^{29} +(-2106.00 + 3647.70i) q^{30} +(40.0000 + 69.2820i) q^{31} +(-720.000 - 1247.08i) q^{32} +(-1998.00 + 3460.64i) q^{33} -756.000 q^{34} +324.000 q^{36} +(2717.00 - 4705.98i) q^{37} +(-8052.00 - 13946.5i) q^{38} +(-1989.00 - 3445.05i) q^{39} +(6552.00 - 11348.4i) q^{40} -7962.00 q^{41} -11524.0 q^{43} +(-888.000 + 1538.06i) q^{44} +(3159.00 + 5471.55i) q^{45} +(12600.0 + 21823.8i) q^{46} +(-6960.00 + 12055.1i) q^{47} -10224.0 q^{48} -17754.0 q^{50} +(-567.000 + 982.073i) q^{51} +(-884.000 - 1531.13i) q^{52} +(4797.00 + 8308.65i) q^{53} +(2187.00 - 3788.00i) q^{54} -34632.0 q^{55} -24156.0 q^{57} +(-16326.0 + 28277.5i) q^{58} +(13746.0 + 23808.8i) q^{59} +(1404.00 + 2431.80i) q^{60} +(24739.0 - 42849.2i) q^{61} +480.000 q^{62} +27712.0 q^{64} +(17238.0 - 29857.1i) q^{65} +(11988.0 + 20763.8i) q^{66} +(29678.0 + 51403.8i) q^{67} +(-252.000 + 436.477i) q^{68} +37800.0 q^{69} +32040.0 q^{71} +(-6804.00 + 11784.9i) q^{72} +(-30923.0 - 53560.2i) q^{73} +(-16302.0 - 28235.9i) q^{74} +(-13315.5 + 23063.1i) q^{75} -10736.0 q^{76} -23868.0 q^{78} +(32888.0 - 56963.7i) q^{79} +(-44304.0 - 76736.8i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(-23886.0 + 41371.8i) q^{82} -40188.0 q^{83} -9828.00 q^{85} +(-34572.0 + 59880.5i) q^{86} +(24489.0 + 42416.2i) q^{87} +(-37296.0 - 64598.6i) q^{88} +(-3987.00 + 6905.69i) q^{89} +37908.0 q^{90} +16800.0 q^{92} +(360.000 - 623.538i) q^{93} +(41760.0 + 72330.4i) q^{94} +(-104676. - 181304. i) q^{95} +(-6480.00 + 11223.7i) q^{96} +143662. q^{97} +35964.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{2} - 9 q^{3} - 4 q^{4} + 78 q^{5} - 108 q^{6} + 336 q^{8} - 81 q^{9} - 468 q^{10} - 444 q^{11} - 36 q^{12} + 884 q^{13} - 1404 q^{15} + 1136 q^{16} - 126 q^{17} + 486 q^{18} + 2684 q^{19} - 624 q^{20}+ \cdots + 71928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 5.19615i 0.530330 0.918559i −0.469044 0.883175i \(-0.655401\pi\)
0.999374 0.0353837i \(-0.0112653\pi\)
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) −2.00000 3.46410i −0.0625000 0.108253i
\(5\) 39.0000 67.5500i 0.697653 1.20837i −0.271625 0.962403i \(-0.587561\pi\)
0.969278 0.245968i \(-0.0791057\pi\)
\(6\) −54.0000 −0.612372
\(7\) 0 0
\(8\) 168.000 0.928078
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −234.000 405.300i −0.739973 1.28167i
\(11\) −222.000 384.515i −0.553186 0.958146i −0.998042 0.0625444i \(-0.980079\pi\)
0.444856 0.895602i \(-0.353255\pi\)
\(12\) −18.0000 + 31.1769i −0.0360844 + 0.0625000i
\(13\) 442.000 0.725377 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(14\) 0 0
\(15\) −702.000 −0.805581
\(16\) 568.000 983.805i 0.554688 0.960747i
\(17\) −63.0000 109.119i −0.0528711 0.0915754i 0.838379 0.545088i \(-0.183504\pi\)
−0.891250 + 0.453513i \(0.850171\pi\)
\(18\) 243.000 + 420.888i 0.176777 + 0.306186i
\(19\) 1342.00 2324.41i 0.852842 1.47717i −0.0257909 0.999667i \(-0.508210\pi\)
0.878633 0.477498i \(-0.158456\pi\)
\(20\) −312.000 −0.174413
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) −2100.00 + 3637.31i −0.827751 + 1.43371i 0.0720476 + 0.997401i \(0.477047\pi\)
−0.899799 + 0.436306i \(0.856287\pi\)
\(24\) −756.000 1309.43i −0.267913 0.464039i
\(25\) −1479.50 2562.57i −0.473440 0.820022i
\(26\) 1326.00 2296.70i 0.384689 0.666301i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −5442.00 −1.20161 −0.600805 0.799396i \(-0.705153\pi\)
−0.600805 + 0.799396i \(0.705153\pi\)
\(30\) −2106.00 + 3647.70i −0.427224 + 0.739973i
\(31\) 40.0000 + 69.2820i 0.00747577 + 0.0129484i 0.869739 0.493512i \(-0.164287\pi\)
−0.862263 + 0.506460i \(0.830954\pi\)
\(32\) −720.000 1247.08i −0.124296 0.215287i
\(33\) −1998.00 + 3460.64i −0.319382 + 0.553186i
\(34\) −756.000 −0.112157
\(35\) 0 0
\(36\) 324.000 0.0416667
\(37\) 2717.00 4705.98i 0.326276 0.565127i −0.655494 0.755201i \(-0.727539\pi\)
0.981770 + 0.190074i \(0.0608727\pi\)
\(38\) −8052.00 13946.5i −0.904575 1.56677i
\(39\) −1989.00 3445.05i −0.209398 0.362689i
\(40\) 6552.00 11348.4i 0.647476 1.12146i
\(41\) −7962.00 −0.739712 −0.369856 0.929089i \(-0.620593\pi\)
−0.369856 + 0.929089i \(0.620593\pi\)
\(42\) 0 0
\(43\) −11524.0 −0.950456 −0.475228 0.879863i \(-0.657634\pi\)
−0.475228 + 0.879863i \(0.657634\pi\)
\(44\) −888.000 + 1538.06i −0.0691483 + 0.119768i
\(45\) 3159.00 + 5471.55i 0.232551 + 0.402790i
\(46\) 12600.0 + 21823.8i 0.877962 + 1.52068i
\(47\) −6960.00 + 12055.1i −0.459584 + 0.796022i −0.998939 0.0460561i \(-0.985335\pi\)
0.539355 + 0.842078i \(0.318668\pi\)
\(48\) −10224.0 −0.640498
\(49\) 0 0
\(50\) −17754.0 −1.00432
\(51\) −567.000 + 982.073i −0.0305251 + 0.0528711i
\(52\) −884.000 1531.13i −0.0453361 0.0785244i
\(53\) 4797.00 + 8308.65i 0.234574 + 0.406294i 0.959149 0.282902i \(-0.0912971\pi\)
−0.724575 + 0.689196i \(0.757964\pi\)
\(54\) 2187.00 3788.00i 0.102062 0.176777i
\(55\) −34632.0 −1.54373
\(56\) 0 0
\(57\) −24156.0 −0.984777
\(58\) −16326.0 + 28277.5i −0.637250 + 1.10375i
\(59\) 13746.0 + 23808.8i 0.514098 + 0.890445i 0.999866 + 0.0163567i \(0.00520675\pi\)
−0.485768 + 0.874088i \(0.661460\pi\)
\(60\) 1404.00 + 2431.80i 0.0503488 + 0.0872067i
\(61\) 24739.0 42849.2i 0.851251 1.47441i −0.0288292 0.999584i \(-0.509178\pi\)
0.880080 0.474825i \(-0.157489\pi\)
\(62\) 480.000 0.0158585
\(63\) 0 0
\(64\) 27712.0 0.845703
\(65\) 17238.0 29857.1i 0.506062 0.876525i
\(66\) 11988.0 + 20763.8i 0.338756 + 0.586742i
\(67\) 29678.0 + 51403.8i 0.807695 + 1.39897i 0.914456 + 0.404685i \(0.132619\pi\)
−0.106761 + 0.994285i \(0.534048\pi\)
\(68\) −252.000 + 436.477i −0.00660889 + 0.0114469i
\(69\) 37800.0 0.955805
\(70\) 0 0
\(71\) 32040.0 0.754304 0.377152 0.926151i \(-0.376903\pi\)
0.377152 + 0.926151i \(0.376903\pi\)
\(72\) −6804.00 + 11784.9i −0.154680 + 0.267913i
\(73\) −30923.0 53560.2i −0.679164 1.17635i −0.975233 0.221180i \(-0.929009\pi\)
0.296069 0.955166i \(-0.404324\pi\)
\(74\) −16302.0 28235.9i −0.346068 0.599408i
\(75\) −13315.5 + 23063.1i −0.273341 + 0.473440i
\(76\) −10736.0 −0.213210
\(77\) 0 0
\(78\) −23868.0 −0.444201
\(79\) 32888.0 56963.7i 0.592884 1.02691i −0.400958 0.916097i \(-0.631323\pi\)
0.993842 0.110809i \(-0.0353441\pi\)
\(80\) −44304.0 76736.8i −0.773959 1.34054i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) −23886.0 + 41371.8i −0.392291 + 0.679469i
\(83\) −40188.0 −0.640326 −0.320163 0.947362i \(-0.603738\pi\)
−0.320163 + 0.947362i \(0.603738\pi\)
\(84\) 0 0
\(85\) −9828.00 −0.147543
\(86\) −34572.0 + 59880.5i −0.504056 + 0.873050i
\(87\) 24489.0 + 42416.2i 0.346875 + 0.600805i
\(88\) −37296.0 64598.6i −0.513400 0.889234i
\(89\) −3987.00 + 6905.69i −0.0533545 + 0.0924127i −0.891469 0.453081i \(-0.850325\pi\)
0.838115 + 0.545494i \(0.183658\pi\)
\(90\) 37908.0 0.493315
\(91\) 0 0
\(92\) 16800.0 0.206938
\(93\) 360.000 623.538i 0.00431614 0.00747577i
\(94\) 41760.0 + 72330.4i 0.487462 + 0.844309i
\(95\) −104676. 181304.i −1.18998 2.06110i
\(96\) −6480.00 + 11223.7i −0.0717624 + 0.124296i
\(97\) 143662. 1.55029 0.775144 0.631784i \(-0.217677\pi\)
0.775144 + 0.631784i \(0.217677\pi\)
\(98\) 0 0
\(99\) 35964.0 0.368791
\(100\) −5918.00 + 10250.3i −0.0591800 + 0.102503i
\(101\) −1353.00 2343.46i −0.0131976 0.0228589i 0.859351 0.511386i \(-0.170868\pi\)
−0.872549 + 0.488527i \(0.837534\pi\)
\(102\) 3402.00 + 5892.44i 0.0323768 + 0.0560783i
\(103\) 65884.0 114114.i 0.611909 1.05986i −0.379009 0.925393i \(-0.623735\pi\)
0.990918 0.134465i \(-0.0429315\pi\)
\(104\) 74256.0 0.673206
\(105\) 0 0
\(106\) 57564.0 0.497607
\(107\) 64458.0 111645.i 0.544274 0.942710i −0.454378 0.890809i \(-0.650139\pi\)
0.998652 0.0519010i \(-0.0165280\pi\)
\(108\) −1458.00 2525.33i −0.0120281 0.0208333i
\(109\) 50489.0 + 87449.5i 0.407034 + 0.705003i 0.994556 0.104205i \(-0.0332298\pi\)
−0.587522 + 0.809208i \(0.699896\pi\)
\(110\) −103896. + 179953.i −0.818686 + 1.41800i
\(111\) −48906.0 −0.376751
\(112\) 0 0
\(113\) 220146. 1.62186 0.810932 0.585140i \(-0.198960\pi\)
0.810932 + 0.585140i \(0.198960\pi\)
\(114\) −72468.0 + 125518.i −0.522257 + 0.904575i
\(115\) 163800. + 283710.i 1.15497 + 2.00046i
\(116\) 10884.0 + 18851.6i 0.0751006 + 0.130078i
\(117\) −17901.0 + 31005.4i −0.120896 + 0.209398i
\(118\) 164952. 1.09057
\(119\) 0 0
\(120\) −117936. −0.747641
\(121\) −18042.5 + 31250.5i −0.112030 + 0.194041i
\(122\) −148434. 257095.i −0.902888 1.56385i
\(123\) 35829.0 + 62057.6i 0.213536 + 0.369856i
\(124\) 160.000 277.128i 0.000934471 0.00161855i
\(125\) 12948.0 0.0741187
\(126\) 0 0
\(127\) −74320.0 −0.408880 −0.204440 0.978879i \(-0.565537\pi\)
−0.204440 + 0.978879i \(0.565537\pi\)
\(128\) 106176. 183902.i 0.572798 0.992115i
\(129\) 51858.0 + 89820.7i 0.274373 + 0.475228i
\(130\) −103428. 179143.i −0.536760 0.929695i
\(131\) −77658.0 + 134508.i −0.395374 + 0.684808i −0.993149 0.116856i \(-0.962718\pi\)
0.597775 + 0.801664i \(0.296052\pi\)
\(132\) 15984.0 0.0798455
\(133\) 0 0
\(134\) 356136. 1.71338
\(135\) 28431.0 49243.9i 0.134263 0.232551i
\(136\) −10584.0 18332.0i −0.0490685 0.0849891i
\(137\) 132123. + 228844.i 0.601419 + 1.04169i 0.992606 + 0.121377i \(0.0387310\pi\)
−0.391188 + 0.920311i \(0.627936\pi\)
\(138\) 113400. 196415.i 0.506892 0.877962i
\(139\) −224612. −0.986043 −0.493022 0.870017i \(-0.664108\pi\)
−0.493022 + 0.870017i \(0.664108\pi\)
\(140\) 0 0
\(141\) 125280. 0.530682
\(142\) 96120.0 166485.i 0.400030 0.692873i
\(143\) −98124.0 169956.i −0.401269 0.695018i
\(144\) 46008.0 + 79688.2i 0.184896 + 0.320249i
\(145\) −212238. + 367607.i −0.838307 + 1.45199i
\(146\) −371076. −1.44072
\(147\) 0 0
\(148\) −21736.0 −0.0815690
\(149\) 41037.0 71078.2i 0.151429 0.262283i −0.780324 0.625376i \(-0.784946\pi\)
0.931753 + 0.363092i \(0.118279\pi\)
\(150\) 79893.0 + 138379.i 0.289922 + 0.502159i
\(151\) 143516. + 248577.i 0.512222 + 0.887194i 0.999900 + 0.0141703i \(0.00451071\pi\)
−0.487678 + 0.873024i \(0.662156\pi\)
\(152\) 225456. 390501.i 0.791503 1.37092i
\(153\) 10206.0 0.0352474
\(154\) 0 0
\(155\) 6240.00 0.0208620
\(156\) −7956.00 + 13780.2i −0.0261748 + 0.0453361i
\(157\) 64939.0 + 112478.i 0.210260 + 0.364181i 0.951796 0.306732i \(-0.0992356\pi\)
−0.741536 + 0.670913i \(0.765902\pi\)
\(158\) −197328. 341782.i −0.628848 1.08920i
\(159\) 43173.0 74777.8i 0.135431 0.234574i
\(160\) −112320. −0.346862
\(161\) 0 0
\(162\) −39366.0 −0.117851
\(163\) −277642. + 480890.i −0.818495 + 1.41768i 0.0882955 + 0.996094i \(0.471858\pi\)
−0.906791 + 0.421581i \(0.861475\pi\)
\(164\) 15924.0 + 27581.2i 0.0462320 + 0.0800761i
\(165\) 155844. + 269930.i 0.445636 + 0.771864i
\(166\) −120564. + 208823.i −0.339584 + 0.588177i
\(167\) −43512.0 −0.120731 −0.0603654 0.998176i \(-0.519227\pi\)
−0.0603654 + 0.998176i \(0.519227\pi\)
\(168\) 0 0
\(169\) −175929. −0.473828
\(170\) −29484.0 + 51067.8i −0.0782464 + 0.135527i
\(171\) 108702. + 188277.i 0.284281 + 0.492388i
\(172\) 23048.0 + 39920.3i 0.0594035 + 0.102890i
\(173\) −9165.00 + 15874.2i −0.0232818 + 0.0403253i −0.877432 0.479702i \(-0.840745\pi\)
0.854150 + 0.520027i \(0.174078\pi\)
\(174\) 293868. 0.735833
\(175\) 0 0
\(176\) −504384. −1.22738
\(177\) 123714. 214279.i 0.296815 0.514098i
\(178\) 23922.0 + 41434.1i 0.0565910 + 0.0980185i
\(179\) 76662.0 + 132782.i 0.178833 + 0.309748i 0.941481 0.337066i \(-0.109434\pi\)
−0.762648 + 0.646814i \(0.776101\pi\)
\(180\) 12636.0 21886.2i 0.0290689 0.0503488i
\(181\) 382066. 0.866846 0.433423 0.901191i \(-0.357306\pi\)
0.433423 + 0.901191i \(0.357306\pi\)
\(182\) 0 0
\(183\) −445302. −0.982940
\(184\) −352800. + 611068.i −0.768217 + 1.33059i
\(185\) −211926. 367067.i −0.455255 0.788525i
\(186\) −2160.00 3741.23i −0.00457795 0.00792925i
\(187\) −27972.0 + 48448.9i −0.0584951 + 0.101316i
\(188\) 55680.0 0.114896
\(189\) 0 0
\(190\) −1.25611e6 −2.52432
\(191\) 136704. 236778.i 0.271143 0.469633i −0.698012 0.716086i \(-0.745932\pi\)
0.969155 + 0.246453i \(0.0792652\pi\)
\(192\) −124704. 215994.i −0.244133 0.422852i
\(193\) −76801.0 133023.i −0.148414 0.257060i 0.782228 0.622993i \(-0.214083\pi\)
−0.930641 + 0.365933i \(0.880750\pi\)
\(194\) 430986. 746490.i 0.822165 1.42403i
\(195\) −310284. −0.584350
\(196\) 0 0
\(197\) 154422. 0.283494 0.141747 0.989903i \(-0.454728\pi\)
0.141747 + 0.989903i \(0.454728\pi\)
\(198\) 107892. 186874.i 0.195581 0.338756i
\(199\) −183428. 317707.i −0.328347 0.568714i 0.653837 0.756635i \(-0.273158\pi\)
−0.982184 + 0.187922i \(0.939825\pi\)
\(200\) −248556. 430512.i −0.439389 0.761044i
\(201\) 267102. 462634.i 0.466323 0.807695i
\(202\) −16236.0 −0.0279963
\(203\) 0 0
\(204\) 4536.00 0.00763128
\(205\) −310518. + 537833.i −0.516062 + 0.893846i
\(206\) −395304. 684687.i −0.649028 1.12415i
\(207\) −170100. 294622.i −0.275917 0.477902i
\(208\) 251056. 434842.i 0.402358 0.696904i
\(209\) −1.19170e6 −1.88712
\(210\) 0 0
\(211\) 520244. 0.804453 0.402227 0.915540i \(-0.368236\pi\)
0.402227 + 0.915540i \(0.368236\pi\)
\(212\) 19188.0 33234.6i 0.0293218 0.0507868i
\(213\) −144180. 249727.i −0.217749 0.377152i
\(214\) −386748. 669867.i −0.577289 0.999895i
\(215\) −449436. + 778446.i −0.663089 + 1.14850i
\(216\) 122472. 0.178609
\(217\) 0 0
\(218\) 605868. 0.863449
\(219\) −278307. + 482042.i −0.392115 + 0.679164i
\(220\) 69264.0 + 119969.i 0.0964830 + 0.167113i
\(221\) −27846.0 48230.7i −0.0383515 0.0664267i
\(222\) −146718. + 254123.i −0.199803 + 0.346068i
\(223\) −304736. −0.410357 −0.205178 0.978725i \(-0.565777\pi\)
−0.205178 + 0.978725i \(0.565777\pi\)
\(224\) 0 0
\(225\) 239679. 0.315627
\(226\) 660438. 1.14391e6i 0.860124 1.48978i
\(227\) 144294. + 249925.i 0.185859 + 0.321917i 0.943866 0.330330i \(-0.107160\pi\)
−0.758007 + 0.652247i \(0.773827\pi\)
\(228\) 48312.0 + 83678.8i 0.0615486 + 0.106605i
\(229\) 386095. 668736.i 0.486525 0.842687i −0.513355 0.858177i \(-0.671597\pi\)
0.999880 + 0.0154899i \(0.00493079\pi\)
\(230\) 1.96560e6 2.45005
\(231\) 0 0
\(232\) −914256. −1.11519
\(233\) −126117. + 218441.i −0.152189 + 0.263599i −0.932032 0.362376i \(-0.881966\pi\)
0.779843 + 0.625975i \(0.215299\pi\)
\(234\) 107406. + 186033.i 0.128230 + 0.222100i
\(235\) 542880. + 940296.i 0.641260 + 1.11069i
\(236\) 54984.0 95235.1i 0.0642623 0.111306i
\(237\) −591984. −0.684603
\(238\) 0 0
\(239\) −1.45114e6 −1.64329 −0.821643 0.570002i \(-0.806942\pi\)
−0.821643 + 0.570002i \(0.806942\pi\)
\(240\) −398736. + 690631.i −0.446845 + 0.773959i
\(241\) −73199.0 126784.i −0.0811825 0.140612i 0.822576 0.568656i \(-0.192536\pi\)
−0.903758 + 0.428043i \(0.859203\pi\)
\(242\) 108255. + 187503.i 0.118825 + 0.205812i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) −197912. −0.212813
\(245\) 0 0
\(246\) 429948. 0.452979
\(247\) 593164. 1.02739e6i 0.618632 1.07150i
\(248\) 6720.00 + 11639.4i 0.00693809 + 0.0120171i
\(249\) 180846. + 313234.i 0.184846 + 0.320163i
\(250\) 38844.0 67279.8i 0.0393074 0.0680824i
\(251\) −607860. −0.609003 −0.304501 0.952512i \(-0.598490\pi\)
−0.304501 + 0.952512i \(0.598490\pi\)
\(252\) 0 0
\(253\) 1.86480e6 1.83160
\(254\) −222960. + 386178.i −0.216842 + 0.375581i
\(255\) 44226.0 + 76601.7i 0.0425919 + 0.0737714i
\(256\) −193664. 335436.i −0.184692 0.319897i
\(257\) 47793.0 82779.9i 0.0451369 0.0781794i −0.842574 0.538580i \(-0.818961\pi\)
0.887711 + 0.460401i \(0.152294\pi\)
\(258\) 622296. 0.582033
\(259\) 0 0
\(260\) −137904. −0.126515
\(261\) 220401. 381746.i 0.200268 0.346875i
\(262\) 465948. + 807046.i 0.419357 + 0.726348i
\(263\) 1.10017e6 + 1.90555e6i 0.980779 + 1.69876i 0.659370 + 0.751819i \(0.270823\pi\)
0.321410 + 0.946940i \(0.395843\pi\)
\(264\) −335664. + 581387.i −0.296411 + 0.513400i
\(265\) 748332. 0.654605
\(266\) 0 0
\(267\) 71766.0 0.0616085
\(268\) 118712. 205615.i 0.100962 0.174871i
\(269\) 885123. + 1.53308e6i 0.745801 + 1.29177i 0.949820 + 0.312798i \(0.101266\pi\)
−0.204019 + 0.978967i \(0.565400\pi\)
\(270\) −170586. 295464.i −0.142408 0.246658i
\(271\) −111752. + 193560.i −0.0924341 + 0.160101i −0.908535 0.417809i \(-0.862798\pi\)
0.816101 + 0.577910i \(0.196131\pi\)
\(272\) −143136. −0.117308
\(273\) 0 0
\(274\) 1.58548e6 1.27580
\(275\) −656898. + 1.13778e6i −0.523801 + 0.907250i
\(276\) −75600.0 130943.i −0.0597378 0.103469i
\(277\) 171389. + 296854.i 0.134210 + 0.232458i 0.925295 0.379248i \(-0.123817\pi\)
−0.791086 + 0.611705i \(0.790484\pi\)
\(278\) −673836. + 1.16712e6i −0.522928 + 0.905739i
\(279\) −6480.00 −0.00498384
\(280\) 0 0
\(281\) 480378. 0.362925 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(282\) 375840. 650974.i 0.281436 0.487462i
\(283\) −14990.0 25963.4i −0.0111259 0.0192706i 0.860409 0.509604i \(-0.170208\pi\)
−0.871535 + 0.490334i \(0.836875\pi\)
\(284\) −64080.0 110990.i −0.0471440 0.0816558i
\(285\) −942084. + 1.63174e6i −0.687033 + 1.18998i
\(286\) −1.17749e6 −0.851219
\(287\) 0 0
\(288\) 116640. 0.0828641
\(289\) 701990. 1.21588e6i 0.494409 0.856342i
\(290\) 1.27343e6 + 2.20564e6i 0.889159 + 1.54007i
\(291\) −646479. 1.11973e6i −0.447530 0.775144i
\(292\) −123692. + 214241.i −0.0848955 + 0.147043i
\(293\) 198066. 0.134785 0.0673924 0.997727i \(-0.478532\pi\)
0.0673924 + 0.997727i \(0.478532\pi\)
\(294\) 0 0
\(295\) 2.14438e6 1.43465
\(296\) 456456. 790605.i 0.302810 0.524482i
\(297\) −161838. 280312.i −0.106461 0.184395i
\(298\) −246222. 426469.i −0.160615 0.278193i
\(299\) −928200. + 1.60769e6i −0.600432 + 1.03998i
\(300\) 106524. 0.0683352
\(301\) 0 0
\(302\) 1.72219e6 1.08659
\(303\) −12177.0 + 21091.2i −0.00761963 + 0.0131976i
\(304\) −1.52451e6 2.64053e6i −0.946121 1.63873i
\(305\) −1.92964e6 3.34224e6i −1.18776 2.05725i
\(306\) 30618.0 53031.9i 0.0186928 0.0323768i
\(307\) 1.04564e6 0.633191 0.316595 0.948561i \(-0.397460\pi\)
0.316595 + 0.948561i \(0.397460\pi\)
\(308\) 0 0
\(309\) −1.18591e6 −0.706572
\(310\) 18720.0 32424.0i 0.0110637 0.0191629i
\(311\) 918588. + 1.59104e6i 0.538542 + 0.932783i 0.998983 + 0.0450920i \(0.0143581\pi\)
−0.460441 + 0.887691i \(0.652309\pi\)
\(312\) −334152. 578768.i −0.194338 0.336603i
\(313\) −182747. + 316527.i −0.105436 + 0.182621i −0.913916 0.405903i \(-0.866957\pi\)
0.808480 + 0.588523i \(0.200291\pi\)
\(314\) 779268. 0.446029
\(315\) 0 0
\(316\) −263104. −0.148221
\(317\) 14169.0 24541.4i 0.00791938 0.0137168i −0.862039 0.506843i \(-0.830812\pi\)
0.869958 + 0.493126i \(0.164146\pi\)
\(318\) −259038. 448667.i −0.143647 0.248803i
\(319\) 1.20812e6 + 2.09253e6i 0.664714 + 1.15132i
\(320\) 1.08077e6 1.87195e6i 0.590007 1.02192i
\(321\) −1.16024e6 −0.628473
\(322\) 0 0
\(323\) −338184. −0.180363
\(324\) −13122.0 + 22728.0i −0.00694444 + 0.0120281i
\(325\) −653939. 1.13266e6i −0.343423 0.594825i
\(326\) 1.66585e6 + 2.88534e6i 0.868145 + 1.50367i
\(327\) 454401. 787046.i 0.235001 0.407034i
\(328\) −1.33762e6 −0.686510
\(329\) 0 0
\(330\) 1.87013e6 0.945337
\(331\) −966958. + 1.67482e6i −0.485107 + 0.840230i −0.999854 0.0171123i \(-0.994553\pi\)
0.514746 + 0.857342i \(0.327886\pi\)
\(332\) 80376.0 + 139215.i 0.0400204 + 0.0693173i
\(333\) 220077. + 381185.i 0.108759 + 0.188376i
\(334\) −130536. + 226095.i −0.0640271 + 0.110898i
\(335\) 4.62977e6 2.25397
\(336\) 0 0
\(337\) −1.88817e6 −0.905664 −0.452832 0.891596i \(-0.649586\pi\)
−0.452832 + 0.891596i \(0.649586\pi\)
\(338\) −527787. + 914154.i −0.251285 + 0.435239i
\(339\) −990657. 1.71587e6i −0.468192 0.810932i
\(340\) 19656.0 + 34045.2i 0.00922142 + 0.0159720i
\(341\) 17760.0 30761.2i 0.00827098 0.0143258i
\(342\) 1.30442e6 0.603050
\(343\) 0 0
\(344\) −1.93603e6 −0.882097
\(345\) 1.47420e6 2.55339e6i 0.666820 1.15497i
\(346\) 54990.0 + 95245.5i 0.0246941 + 0.0427715i
\(347\) −1.45969e6 2.52825e6i −0.650782 1.12719i −0.982933 0.183962i \(-0.941108\pi\)
0.332151 0.943226i \(-0.392226\pi\)
\(348\) 97956.0 169665.i 0.0433594 0.0751006i
\(349\) 780682. 0.343092 0.171546 0.985176i \(-0.445124\pi\)
0.171546 + 0.985176i \(0.445124\pi\)
\(350\) 0 0
\(351\) 322218. 0.139599
\(352\) −319680. + 553702.i −0.137518 + 0.238188i
\(353\) 667185. + 1.15560e6i 0.284977 + 0.493594i 0.972604 0.232470i \(-0.0746808\pi\)
−0.687627 + 0.726064i \(0.741347\pi\)
\(354\) −742284. 1.28567e6i −0.314820 0.545284i
\(355\) 1.24956e6 2.16430e6i 0.526243 0.911479i
\(356\) 31896.0 0.0133386
\(357\) 0 0
\(358\) 919944. 0.379362
\(359\) −508716. + 881122.i −0.208324 + 0.360828i −0.951187 0.308616i \(-0.900134\pi\)
0.742863 + 0.669444i \(0.233468\pi\)
\(360\) 530712. + 919220.i 0.215825 + 0.373821i
\(361\) −2.36388e6 4.09436e6i −0.954679 1.65355i
\(362\) 1.14620e6 1.98527e6i 0.459715 0.796249i
\(363\) 324765. 0.129361
\(364\) 0 0
\(365\) −4.82399e6 −1.89528
\(366\) −1.33591e6 + 2.31386e6i −0.521283 + 0.902888i
\(367\) 418840. + 725452.i 0.162324 + 0.281154i 0.935702 0.352792i \(-0.114768\pi\)
−0.773378 + 0.633946i \(0.781434\pi\)
\(368\) 2.38560e6 + 4.13198e6i 0.918286 + 1.59052i
\(369\) 322461. 558519.i 0.123285 0.213536i
\(370\) −2.54311e6 −0.965742
\(371\) 0 0
\(372\) −2880.00 −0.00107903
\(373\) 759965. 1.31630e6i 0.282827 0.489871i −0.689253 0.724521i \(-0.742061\pi\)
0.972080 + 0.234650i \(0.0753943\pi\)
\(374\) 167832. + 290694.i 0.0620434 + 0.107462i
\(375\) −58266.0 100920.i −0.0213962 0.0370593i
\(376\) −1.16928e6 + 2.02525e6i −0.426529 + 0.738770i
\(377\) −2.40536e6 −0.871620
\(378\) 0 0
\(379\) 2.64465e6 0.945737 0.472869 0.881133i \(-0.343219\pi\)
0.472869 + 0.881133i \(0.343219\pi\)
\(380\) −418704. + 725217.i −0.148747 + 0.257637i
\(381\) 334440. + 579267.i 0.118034 + 0.204440i
\(382\) −820224. 1.42067e6i −0.287590 0.498121i
\(383\) 1.00668e6 1.74362e6i 0.350667 0.607373i −0.635700 0.771936i \(-0.719288\pi\)
0.986366 + 0.164564i \(0.0526217\pi\)
\(384\) −1.91117e6 −0.661410
\(385\) 0 0
\(386\) −921612. −0.314833
\(387\) 466722. 808386.i 0.158409 0.274373i
\(388\) −287324. 497660.i −0.0968930 0.167824i
\(389\) 363117. + 628937.i 0.121667 + 0.210733i 0.920425 0.390919i \(-0.127843\pi\)
−0.798758 + 0.601652i \(0.794509\pi\)
\(390\) −930852. + 1.61228e6i −0.309898 + 0.536760i
\(391\) 529200. 0.175056
\(392\) 0 0
\(393\) 1.39784e6 0.456538
\(394\) 463266. 802400.i 0.150345 0.260406i
\(395\) −2.56526e6 4.44317e6i −0.827255 1.43285i
\(396\) −71928.0 124583.i −0.0230494 0.0399228i
\(397\) 2.28789e6 3.96274e6i 0.728549 1.26188i −0.228947 0.973439i \(-0.573528\pi\)
0.957496 0.288446i \(-0.0931385\pi\)
\(398\) −2.20114e6 −0.696529
\(399\) 0 0
\(400\) −3.36142e6 −1.05045
\(401\) 16935.0 29332.3i 0.00525926 0.00910930i −0.863384 0.504548i \(-0.831659\pi\)
0.868643 + 0.495438i \(0.164993\pi\)
\(402\) −1.60261e6 2.77581e6i −0.494610 0.856690i
\(403\) 17680.0 + 30622.7i 0.00542275 + 0.00939248i
\(404\) −5412.00 + 9373.86i −0.00164970 + 0.00285736i
\(405\) −511758. −0.155034
\(406\) 0 0
\(407\) −2.41270e6 −0.721966
\(408\) −95256.0 + 164988.i −0.0283297 + 0.0490685i
\(409\) −2.93089e6 5.07645e6i −0.866346 1.50056i −0.865704 0.500556i \(-0.833129\pi\)
−0.000641640 1.00000i \(-0.500204\pi\)
\(410\) 1.86311e6 + 3.22700e6i 0.547367 + 0.948067i
\(411\) 1.18911e6 2.05959e6i 0.347229 0.601419i
\(412\) −527072. −0.152977
\(413\) 0 0
\(414\) −2.04120e6 −0.585308
\(415\) −1.56733e6 + 2.71470e6i −0.446726 + 0.773751i
\(416\) −318240. 551208.i −0.0901616 0.156164i
\(417\) 1.01075e6 + 1.75068e6i 0.284646 + 0.493022i
\(418\) −3.57509e6 + 6.19223e6i −1.00080 + 1.73343i
\(419\) −302748. −0.0842454 −0.0421227 0.999112i \(-0.513412\pi\)
−0.0421227 + 0.999112i \(0.513412\pi\)
\(420\) 0 0
\(421\) −5.36708e6 −1.47582 −0.737909 0.674900i \(-0.764187\pi\)
−0.737909 + 0.674900i \(0.764187\pi\)
\(422\) 1.56073e6 2.70327e6i 0.426626 0.738938i
\(423\) −563760. 976461.i −0.153195 0.265341i
\(424\) 805896. + 1.39585e6i 0.217703 + 0.377073i
\(425\) −186417. + 322884.i −0.0500626 + 0.0867109i
\(426\) −1.73016e6 −0.461915
\(427\) 0 0
\(428\) −515664. −0.136068
\(429\) −883116. + 1.52960e6i −0.231673 + 0.401269i
\(430\) 2.69662e6 + 4.67068e6i 0.703312 + 1.21817i
\(431\) −588528. 1.01936e6i −0.152607 0.264323i 0.779578 0.626305i \(-0.215433\pi\)
−0.932185 + 0.361982i \(0.882100\pi\)
\(432\) 414072. 717194.i 0.106750 0.184896i
\(433\) 3.66249e6 0.938766 0.469383 0.882995i \(-0.344476\pi\)
0.469383 + 0.882995i \(0.344476\pi\)
\(434\) 0 0
\(435\) 3.82028e6 0.967994
\(436\) 201956. 349798.i 0.0508792 0.0881254i
\(437\) 5.63640e6 + 9.76253e6i 1.41188 + 2.44545i
\(438\) 1.66984e6 + 2.89225e6i 0.415901 + 0.720362i
\(439\) −1.26837e6 + 2.19688e6i −0.314113 + 0.544059i −0.979248 0.202663i \(-0.935040\pi\)
0.665136 + 0.746722i \(0.268374\pi\)
\(440\) −5.81818e6 −1.43270
\(441\) 0 0
\(442\) −334152. −0.0813558
\(443\) −3.00752e6 + 5.20917e6i −0.728113 + 1.26113i 0.229566 + 0.973293i \(0.426269\pi\)
−0.957680 + 0.287836i \(0.907064\pi\)
\(444\) 97812.0 + 169415.i 0.0235470 + 0.0407845i
\(445\) 310986. + 538644.i 0.0744459 + 0.128944i
\(446\) −914208. + 1.58345e6i −0.217625 + 0.376937i
\(447\) −738666. −0.174856
\(448\) 0 0
\(449\) 5.65965e6 1.32487 0.662436 0.749119i \(-0.269523\pi\)
0.662436 + 0.749119i \(0.269523\pi\)
\(450\) 719037. 1.24541e6i 0.167386 0.289922i
\(451\) 1.76756e6 + 3.06151e6i 0.409198 + 0.708752i
\(452\) −440292. 762608.i −0.101367 0.175572i
\(453\) 1.29164e6 2.23719e6i 0.295731 0.512222i
\(454\) 1.73153e6 0.394267
\(455\) 0 0
\(456\) −4.05821e6 −0.913949
\(457\) 3.23080e6 5.59590e6i 0.723634 1.25337i −0.235900 0.971777i \(-0.575804\pi\)
0.959534 0.281593i \(-0.0908629\pi\)
\(458\) −2.31657e6 4.01242e6i −0.516038 0.893804i
\(459\) −45927.0 79547.9i −0.0101750 0.0176237i
\(460\) 655200. 1.13484e6i 0.144371 0.250058i
\(461\) 3.37353e6 0.739320 0.369660 0.929167i \(-0.379474\pi\)
0.369660 + 0.929167i \(0.379474\pi\)
\(462\) 0 0
\(463\) −4.54974e6 −0.986358 −0.493179 0.869928i \(-0.664165\pi\)
−0.493179 + 0.869928i \(0.664165\pi\)
\(464\) −3.09106e6 + 5.35387e6i −0.666518 + 1.15444i
\(465\) −28080.0 48636.0i −0.00602233 0.0104310i
\(466\) 756702. + 1.31065e6i 0.161421 + 0.279589i
\(467\) 1.00568e6 1.74189e6i 0.213386 0.369596i −0.739386 0.673282i \(-0.764884\pi\)
0.952772 + 0.303686i \(0.0982173\pi\)
\(468\) 143208. 0.0302240
\(469\) 0 0
\(470\) 6.51456e6 1.36032
\(471\) 584451. 1.01230e6i 0.121394 0.210260i
\(472\) 2.30933e6 + 3.99987e6i 0.477123 + 0.826402i
\(473\) 2.55833e6 + 4.43115e6i 0.525779 + 0.910676i
\(474\) −1.77595e6 + 3.07604e6i −0.363066 + 0.628848i
\(475\) −7.94196e6 −1.61508
\(476\) 0 0
\(477\) −777114. −0.156383
\(478\) −4.35341e6 + 7.54032e6i −0.871484 + 1.50946i
\(479\) −3.80201e6 6.58527e6i −0.757137 1.31140i −0.944305 0.329071i \(-0.893264\pi\)
0.187168 0.982328i \(-0.440069\pi\)
\(480\) 505440. + 875448.i 0.100131 + 0.173431i
\(481\) 1.20091e6 2.08004e6i 0.236673 0.409930i
\(482\) −878388. −0.172214
\(483\) 0 0
\(484\) 144340. 0.0280074
\(485\) 5.60282e6 9.70437e6i 1.08156 1.87332i
\(486\) 177147. + 306828.i 0.0340207 + 0.0589256i
\(487\) −336556. 582932.i −0.0643035 0.111377i 0.832081 0.554654i \(-0.187149\pi\)
−0.896385 + 0.443277i \(0.853816\pi\)
\(488\) 4.15615e6 7.19867e6i 0.790027 1.36837i
\(489\) 4.99756e6 0.945117
\(490\) 0 0
\(491\) −2.47170e6 −0.462692 −0.231346 0.972872i \(-0.574313\pi\)
−0.231346 + 0.972872i \(0.574313\pi\)
\(492\) 143316. 248231.i 0.0266920 0.0462320i
\(493\) 342846. + 593827.i 0.0635304 + 0.110038i
\(494\) −3.55898e6 6.16434e6i −0.656158 1.13650i
\(495\) 1.40260e6 2.42937e6i 0.257288 0.445636i
\(496\) 90880.0 0.0165869
\(497\) 0 0
\(498\) 2.17015e6 0.392118
\(499\) −3.04076e6 + 5.26675e6i −0.546677 + 0.946873i 0.451822 + 0.892108i \(0.350774\pi\)
−0.998499 + 0.0547648i \(0.982559\pi\)
\(500\) −25896.0 44853.2i −0.00463242 0.00802358i
\(501\) 195804. + 339142.i 0.0348520 + 0.0603654i
\(502\) −1.82358e6 + 3.15853e6i −0.322972 + 0.559405i
\(503\) 846216. 0.149129 0.0745644 0.997216i \(-0.476243\pi\)
0.0745644 + 0.997216i \(0.476243\pi\)
\(504\) 0 0
\(505\) −211068. −0.0368293
\(506\) 5.59440e6 9.68979e6i 0.971353 1.68243i
\(507\) 791680. + 1.37123e6i 0.136782 + 0.236914i
\(508\) 148640. + 257452.i 0.0255550 + 0.0442626i
\(509\) −3.83392e6 + 6.64055e6i −0.655917 + 1.13608i 0.325746 + 0.945457i \(0.394385\pi\)
−0.981663 + 0.190625i \(0.938949\pi\)
\(510\) 530712. 0.0903511
\(511\) 0 0
\(512\) 4.47130e6 0.753804
\(513\) 978318. 1.69450e6i 0.164129 0.284281i
\(514\) −286758. 496679.i −0.0478749 0.0829217i
\(515\) −5.13895e6 8.90093e6i −0.853801 1.47883i
\(516\) 207432. 359283.i 0.0342966 0.0594035i
\(517\) 6.18048e6 1.01694
\(518\) 0 0
\(519\) 164970. 0.0268835
\(520\) 2.89598e6 5.01599e6i 0.469665 0.813483i
\(521\) −4.84469e6 8.39125e6i −0.781937 1.35435i −0.930812 0.365499i \(-0.880898\pi\)
0.148875 0.988856i \(-0.452435\pi\)
\(522\) −1.32241e6 2.29047e6i −0.212417 0.367916i
\(523\) −3.75839e6 + 6.50972e6i −0.600824 + 1.04066i 0.391872 + 0.920020i \(0.371828\pi\)
−0.992696 + 0.120639i \(0.961506\pi\)
\(524\) 621264. 0.0988435
\(525\) 0 0
\(526\) 1.32021e7 2.08055
\(527\) 5040.00 8729.54i 0.000790504 0.00136919i
\(528\) 2.26973e6 + 3.93128e6i 0.354315 + 0.613691i
\(529\) −5.60183e6 9.70265e6i −0.870343 1.50748i
\(530\) 2.24500e6 3.88845e6i 0.347157 0.601294i
\(531\) −2.22685e6 −0.342732
\(532\) 0 0
\(533\) −3.51920e6 −0.536570
\(534\) 215298. 372907.i 0.0326728 0.0565910i
\(535\) −5.02772e6 8.70827e6i −0.759429 1.31537i
\(536\) 4.98590e6 + 8.63584e6i 0.749604 + 1.29835i
\(537\) 689958. 1.19504e6i 0.103249 0.178833i
\(538\) 1.06215e7 1.58208
\(539\) 0 0
\(540\) −227448. −0.0335659
\(541\) −3.67162e6 + 6.35944e6i −0.539343 + 0.934169i 0.459597 + 0.888128i \(0.347994\pi\)
−0.998940 + 0.0460415i \(0.985339\pi\)
\(542\) 670512. + 1.16136e6i 0.0980411 + 0.169812i
\(543\) −1.71930e6 2.97791e6i −0.250237 0.433423i
\(544\) −90720.0 + 157132.i −0.0131433 + 0.0227649i
\(545\) 7.87628e6 1.13587
\(546\) 0 0
\(547\) 2.18296e6 0.311945 0.155973 0.987761i \(-0.450149\pi\)
0.155973 + 0.987761i \(0.450149\pi\)
\(548\) 528492. 915375.i 0.0751774 0.130211i
\(549\) 2.00386e6 + 3.47079e6i 0.283750 + 0.491470i
\(550\) 3.94139e6 + 6.82668e6i 0.555575 + 0.962284i
\(551\) −7.30316e6 + 1.26495e7i −1.02478 + 1.77498i
\(552\) 6.35040e6 0.887061
\(553\) 0 0
\(554\) 2.05667e6 0.284702
\(555\) −1.90733e6 + 3.30360e6i −0.262842 + 0.455255i
\(556\) 449224. + 778079.i 0.0616277 + 0.106742i
\(557\) −6.27328e6 1.08656e7i −0.856755 1.48394i −0.875007 0.484110i \(-0.839144\pi\)
0.0182524 0.999833i \(-0.494190\pi\)
\(558\) −19440.0 + 33671.1i −0.00264308 + 0.00457795i
\(559\) −5.09361e6 −0.689439
\(560\) 0 0
\(561\) 503496. 0.0675443
\(562\) 1.44113e6 2.49612e6i 0.192470 0.333368i
\(563\) 2.57986e6 + 4.46845e6i 0.343025 + 0.594136i 0.984993 0.172595i \(-0.0552152\pi\)
−0.641968 + 0.766731i \(0.721882\pi\)
\(564\) −250560. 433983.i −0.0331676 0.0574480i
\(565\) 8.58569e6 1.48709e7i 1.13150 1.95981i
\(566\) −179880. −0.0236016
\(567\) 0 0
\(568\) 5.38272e6 0.700053
\(569\) −5.87260e6 + 1.01717e7i −0.760414 + 1.31708i 0.182223 + 0.983257i \(0.441671\pi\)
−0.942637 + 0.333819i \(0.891663\pi\)
\(570\) 5.65250e6 + 9.79042e6i 0.728708 + 1.26216i
\(571\) 3.77364e6 + 6.53614e6i 0.484362 + 0.838940i 0.999839 0.0179636i \(-0.00571829\pi\)
−0.515476 + 0.856904i \(0.672385\pi\)
\(572\) −392496. + 679823.i −0.0501586 + 0.0868772i
\(573\) −2.46067e6 −0.313089
\(574\) 0 0
\(575\) 1.24278e7 1.56756
\(576\) −1.12234e6 + 1.94394e6i −0.140951 + 0.244133i
\(577\) 4.64242e6 + 8.04090e6i 0.580503 + 1.00546i 0.995420 + 0.0956015i \(0.0304775\pi\)
−0.414916 + 0.909859i \(0.636189\pi\)
\(578\) −4.21194e6 7.29530e6i −0.524400 0.908288i
\(579\) −691209. + 1.19721e6i −0.0856866 + 0.148414i
\(580\) 1.69790e6 0.209577
\(581\) 0 0
\(582\) −7.75775e6 −0.949354
\(583\) 2.12987e6 3.68904e6i 0.259526 0.449513i
\(584\) −5.19506e6 8.99811e6i −0.630317 1.09174i
\(585\) 1.39628e6 + 2.41842e6i 0.168687 + 0.292175i
\(586\) 594198. 1.02918e6i 0.0714804 0.123808i
\(587\) −1.47623e6 −0.176831 −0.0884155 0.996084i \(-0.528180\pi\)
−0.0884155 + 0.996084i \(0.528180\pi\)
\(588\) 0 0
\(589\) 214720. 0.0255026
\(590\) 6.43313e6 1.11425e7i 0.760838 1.31781i
\(591\) −694899. 1.20360e6i −0.0818376 0.141747i
\(592\) −3.08651e6 5.34600e6i −0.361963 0.626938i
\(593\) −6.20034e6 + 1.07393e7i −0.724067 + 1.25412i 0.235289 + 0.971925i \(0.424396\pi\)
−0.959357 + 0.282196i \(0.908937\pi\)
\(594\) −1.94206e6 −0.225837
\(595\) 0 0
\(596\) −328296. −0.0378573
\(597\) −1.65085e6 + 2.85936e6i −0.189571 + 0.328347i
\(598\) 5.56920e6 + 9.64614e6i 0.636854 + 1.10306i
\(599\) 1.84564e6 + 3.19674e6i 0.210174 + 0.364032i 0.951769 0.306816i \(-0.0992636\pi\)
−0.741595 + 0.670848i \(0.765930\pi\)
\(600\) −2.23700e6 + 3.87460e6i −0.253681 + 0.439389i
\(601\) −9.12223e6 −1.03018 −0.515092 0.857135i \(-0.672242\pi\)
−0.515092 + 0.857135i \(0.672242\pi\)
\(602\) 0 0
\(603\) −4.80784e6 −0.538464
\(604\) 574064. 994308.i 0.0640277 0.110899i
\(605\) 1.40732e6 + 2.43754e6i 0.156316 + 0.270747i
\(606\) 73062.0 + 126547.i 0.00808184 + 0.0139981i
\(607\) −2.83957e6 + 4.91828e6i −0.312810 + 0.541803i −0.978970 0.204007i \(-0.934604\pi\)
0.666160 + 0.745809i \(0.267937\pi\)
\(608\) −3.86496e6 −0.424020
\(609\) 0 0
\(610\) −2.31557e7 −2.51961
\(611\) −3.07632e6 + 5.32834e6i −0.333372 + 0.577416i
\(612\) −20412.0 35354.6i −0.00220296 0.00381564i
\(613\) 7.00529e6 + 1.21335e7i 0.752966 + 1.30417i 0.946379 + 0.323057i \(0.104711\pi\)
−0.193414 + 0.981117i \(0.561956\pi\)
\(614\) 3.13691e6 5.43328e6i 0.335800 0.581623i
\(615\) 5.58932e6 0.595897
\(616\) 0 0
\(617\) −253686. −0.0268277 −0.0134139 0.999910i \(-0.504270\pi\)
−0.0134139 + 0.999910i \(0.504270\pi\)
\(618\) −3.55774e6 + 6.16218e6i −0.374716 + 0.649028i
\(619\) 2.15017e6 + 3.72420e6i 0.225552 + 0.390667i 0.956485 0.291782i \(-0.0942482\pi\)
−0.730933 + 0.682449i \(0.760915\pi\)
\(620\) −12480.0 21616.0i −0.00130387 0.00225837i
\(621\) −1.53090e6 + 2.65160e6i −0.159301 + 0.275917i
\(622\) 1.10231e7 1.14242
\(623\) 0 0
\(624\) −4.51901e6 −0.464603
\(625\) 5.12841e6 8.88267e6i 0.525149 0.909585i
\(626\) 1.09648e6 + 1.89916e6i 0.111832 + 0.193699i
\(627\) 5.36263e6 + 9.28835e6i 0.544765 + 0.943561i
\(628\) 259756. 449911.i 0.0262825 0.0455226i
\(629\) −684684. −0.0690023
\(630\) 0 0
\(631\) 1.04150e7 1.04132 0.520662 0.853763i \(-0.325685\pi\)
0.520662 + 0.853763i \(0.325685\pi\)
\(632\) 5.52518e6 9.56990e6i 0.550242 0.953048i
\(633\) −2.34110e6 4.05490e6i −0.232226 0.402227i
\(634\) −85014.0 147249.i −0.00839977 0.0145488i
\(635\) −2.89848e6 + 5.02031e6i −0.285257 + 0.494079i
\(636\) −345384. −0.0338579
\(637\) 0 0
\(638\) 1.44975e7 1.41007
\(639\) −1.29762e6 + 2.24754e6i −0.125717 + 0.217749i
\(640\) −8.28173e6 1.43444e7i −0.799229 1.38430i
\(641\) −2.26357e6 3.92062e6i −0.217595 0.376885i 0.736477 0.676462i \(-0.236488\pi\)
−0.954072 + 0.299577i \(0.903154\pi\)
\(642\) −3.48073e6 + 6.02880e6i −0.333298 + 0.577289i
\(643\) −1.49687e7 −1.42776 −0.713882 0.700266i \(-0.753065\pi\)
−0.713882 + 0.700266i \(0.753065\pi\)
\(644\) 0 0
\(645\) 8.08985e6 0.765669
\(646\) −1.01455e6 + 1.75726e6i −0.0956518 + 0.165674i
\(647\) −8.65098e6 1.49839e7i −0.812465 1.40723i −0.911134 0.412110i \(-0.864792\pi\)
0.0986691 0.995120i \(-0.468541\pi\)
\(648\) −551124. 954575.i −0.0515599 0.0893043i
\(649\) 6.10322e6 1.05711e7i 0.568784 0.985163i
\(650\) −7.84727e6 −0.728509
\(651\) 0 0
\(652\) 2.22114e6 0.204624
\(653\) −2.03735e6 + 3.52880e6i −0.186975 + 0.323850i −0.944240 0.329258i \(-0.893202\pi\)
0.757265 + 0.653107i \(0.226535\pi\)
\(654\) −2.72641e6 4.72227e6i −0.249256 0.431725i
\(655\) 6.05732e6 + 1.04916e7i 0.551668 + 0.955516i
\(656\) −4.52242e6 + 7.83305e6i −0.410309 + 0.710676i
\(657\) 5.00953e6 0.452776
\(658\) 0 0
\(659\) −3.79475e6 −0.340384 −0.170192 0.985411i \(-0.554439\pi\)
−0.170192 + 0.985411i \(0.554439\pi\)
\(660\) 623376. 1.07972e6i 0.0557045 0.0964830i
\(661\) 8.21307e6 + 1.42255e7i 0.731142 + 1.26638i 0.956395 + 0.292075i \(0.0943458\pi\)
−0.225253 + 0.974300i \(0.572321\pi\)
\(662\) 5.80175e6 + 1.00489e7i 0.514534 + 0.891199i
\(663\) −250614. + 434076.i −0.0221422 + 0.0383515i
\(664\) −6.75158e6 −0.594272
\(665\) 0 0
\(666\) 2.64092e6 0.230712
\(667\) 1.14282e7 1.97942e7i 0.994634 1.72276i
\(668\) 87024.0 + 150730.i 0.00754567 + 0.0130695i
\(669\) 1.37131e6 + 2.37518e6i 0.118460 + 0.205178i
\(670\) 1.38893e7 2.40570e7i 1.19535 2.07040i
\(671\) −2.19682e7 −1.88360
\(672\) 0 0
\(673\) 5.50675e6 0.468660 0.234330 0.972157i \(-0.424710\pi\)
0.234330 + 0.972157i \(0.424710\pi\)
\(674\) −5.66452e6 + 9.81124e6i −0.480301 + 0.831906i
\(675\) −1.07856e6 1.86811e6i −0.0911136 0.157813i
\(676\) 351858. + 609436.i 0.0296142 + 0.0512934i
\(677\) 9.19787e6 1.59312e7i 0.771286 1.33591i −0.165572 0.986198i \(-0.552947\pi\)
0.936858 0.349709i \(-0.113720\pi\)
\(678\) −1.18879e7 −0.993185
\(679\) 0 0
\(680\) −1.65110e6 −0.136931
\(681\) 1.29865e6 2.24932e6i 0.107306 0.185859i
\(682\) −106560. 184567.i −0.00877270 0.0151948i
\(683\) −879174. 1.52277e6i −0.0721146 0.124906i 0.827713 0.561151i \(-0.189641\pi\)
−0.899828 + 0.436245i \(0.856308\pi\)
\(684\) 434808. 753110.i 0.0355351 0.0615486i
\(685\) 2.06112e7 1.67833
\(686\) 0 0
\(687\) −6.94971e6 −0.561791
\(688\) −6.54563e6 + 1.13374e7i −0.527206 + 0.913148i
\(689\) 2.12027e6 + 3.67242e6i 0.170155 + 0.294717i
\(690\) −8.84520e6 1.53203e7i −0.707270 1.22503i
\(691\) −2.68157e6 + 4.64462e6i −0.213646 + 0.370045i −0.952853 0.303433i \(-0.901867\pi\)
0.739207 + 0.673478i \(0.235200\pi\)
\(692\) 73320.0 0.00582046
\(693\) 0 0
\(694\) −1.75162e7 −1.38052
\(695\) −8.75987e6 + 1.51725e7i −0.687916 + 1.19151i
\(696\) 4.11415e6 + 7.12592e6i 0.321927 + 0.557594i
\(697\) 501606. + 868807.i 0.0391094 + 0.0677394i
\(698\) 2.34205e6 4.05654e6i 0.181952 0.315150i
\(699\) 2.27011e6 0.175733
\(700\) 0 0
\(701\) −2.12606e7 −1.63411 −0.817054 0.576561i \(-0.804394\pi\)
−0.817054 + 0.576561i \(0.804394\pi\)
\(702\) 966654. 1.67429e6i 0.0740335 0.128230i
\(703\) −7.29243e6 1.26309e7i −0.556524 0.963928i
\(704\) −6.15206e6 1.06557e7i −0.467831 0.810307i
\(705\) 4.88592e6 8.46266e6i 0.370232 0.641260i
\(706\) 8.00622e6 0.604527
\(707\) 0 0
\(708\) −989712. −0.0742037
\(709\) −1.03864e6 + 1.79898e6i −0.0775980 + 0.134404i −0.902213 0.431290i \(-0.858058\pi\)
0.824615 + 0.565694i \(0.191392\pi\)
\(710\) −7.49736e6 1.29858e7i −0.558165 0.966770i
\(711\) 2.66393e6 + 4.61406e6i 0.197628 + 0.342302i
\(712\) −669816. + 1.16016e6i −0.0495171 + 0.0857662i
\(713\) −336000. −0.0247523
\(714\) 0 0
\(715\) −1.53073e7 −1.11979
\(716\) 306648. 531130.i 0.0223541 0.0387185i
\(717\) 6.53011e6 + 1.13105e7i 0.474376 + 0.821643i
\(718\) 3.05230e6 + 5.28673e6i 0.220961 + 0.382716i
\(719\) 2.11810e6 3.66865e6i 0.152800 0.264657i −0.779456 0.626457i \(-0.784504\pi\)
0.932256 + 0.361800i \(0.117838\pi\)
\(720\) 7.17725e6 0.515973
\(721\) 0 0
\(722\) −2.83665e7 −2.02518
\(723\) −658791. + 1.14106e6i −0.0468708 + 0.0811825i
\(724\) −764132. 1.32352e6i −0.0541779 0.0938388i
\(725\) 8.05144e6 + 1.39455e7i 0.568890 + 0.985347i
\(726\) 974295. 1.68753e6i 0.0686039 0.118825i
\(727\) −2.14524e7 −1.50536 −0.752678 0.658389i \(-0.771238\pi\)
−0.752678 + 0.658389i \(0.771238\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −1.44720e7 + 2.50662e7i −1.00513 + 1.74093i
\(731\) 726012. + 1.25749e6i 0.0502517 + 0.0870384i
\(732\) 890604. + 1.54257e6i 0.0614337 + 0.106406i
\(733\) −7.44459e6 + 1.28944e7i −0.511777 + 0.886424i 0.488130 + 0.872771i \(0.337679\pi\)
−0.999907 + 0.0136528i \(0.995654\pi\)
\(734\) 5.02608e6 0.344341
\(735\) 0 0
\(736\) 6.04800e6 0.411545
\(737\) 1.31770e7 2.28233e7i 0.893612 1.54778i
\(738\) −1.93477e6 3.35111e6i −0.130764 0.226490i
\(739\) −3.49662e6 6.05632e6i −0.235525 0.407941i 0.723900 0.689905i \(-0.242348\pi\)
−0.959425 + 0.281963i \(0.909014\pi\)
\(740\) −847704. + 1.46827e6i −0.0569069 + 0.0985656i
\(741\) −1.06770e7 −0.714335
\(742\) 0 0
\(743\) 1.90428e6 0.126549 0.0632745 0.997996i \(-0.479846\pi\)
0.0632745 + 0.997996i \(0.479846\pi\)
\(744\) 60480.0 104754.i 0.00400571 0.00693809i
\(745\) −3.20089e6 5.54410e6i −0.211290 0.365966i
\(746\) −4.55979e6 7.89779e6i −0.299984 0.519587i
\(747\) 1.62761e6 2.81911e6i 0.106721 0.184846i
\(748\) 223776. 0.0146238
\(749\) 0 0
\(750\) −699192. −0.0453882
\(751\) −9.76806e6 + 1.69188e7i −0.631988 + 1.09463i 0.355157 + 0.934807i \(0.384427\pi\)
−0.987145 + 0.159828i \(0.948906\pi\)
\(752\) 7.90656e6 + 1.36946e7i 0.509851 + 0.883087i
\(753\) 2.73537e6 + 4.73780e6i 0.175804 + 0.304501i
\(754\) −7.21609e6 + 1.24986e7i −0.462247 + 0.800635i
\(755\) 2.23885e7 1.42941
\(756\) 0 0
\(757\) 1.25183e6 0.0793973 0.0396986 0.999212i \(-0.487360\pi\)
0.0396986 + 0.999212i \(0.487360\pi\)
\(758\) 7.93396e6 1.37420e7i 0.501553 0.868715i
\(759\) −8.39160e6 1.45347e7i −0.528738 0.915801i
\(760\) −1.75856e7 3.04591e7i −1.10439 1.91286i
\(761\) 1.02236e7 1.77078e7i 0.639944 1.10841i −0.345501 0.938418i \(-0.612291\pi\)
0.985445 0.169997i \(-0.0543757\pi\)
\(762\) 4.01328e6 0.250387
\(763\) 0 0
\(764\) −1.09363e6 −0.0677857
\(765\) 398034. 689415.i 0.0245905 0.0425919i
\(766\) −6.04008e6 1.04617e7i −0.371938 0.644216i
\(767\) 6.07573e6 + 1.05235e7i 0.372915 + 0.645908i
\(768\) −1.74298e6 + 3.01892e6i −0.106632 + 0.184692i
\(769\) −2.21064e6 −0.134804 −0.0674020 0.997726i \(-0.521471\pi\)
−0.0674020 + 0.997726i \(0.521471\pi\)
\(770\) 0 0
\(771\) −860274. −0.0521196
\(772\) −307204. + 532093.i −0.0185517 + 0.0321325i
\(773\) 6.45753e6 + 1.11848e7i 0.388703 + 0.673253i 0.992275 0.124055i \(-0.0395900\pi\)
−0.603573 + 0.797308i \(0.706257\pi\)
\(774\) −2.80033e6 4.85032e6i −0.168019 0.291017i
\(775\) 118360. 205006.i 0.00707865 0.0122606i
\(776\) 2.41352e7 1.43879
\(777\) 0 0
\(778\) 4.35740e6 0.258095
\(779\) −1.06850e7 + 1.85070e7i −0.630857 + 1.09268i
\(780\) 620568. + 1.07486e6i 0.0365219 + 0.0632577i
\(781\) −7.11288e6 1.23199e7i −0.417271 0.722734i
\(782\) 1.58760e6 2.74980e6i 0.0928377 0.160800i
\(783\) −3.96722e6 −0.231250
\(784\) 0 0
\(785\) 1.01305e7 0.586754
\(786\) 4.19353e6 7.26341e6i 0.242116 0.419357i
\(787\) −6.77496e6 1.17346e7i −0.389915 0.675353i 0.602523 0.798102i \(-0.294162\pi\)
−0.992438 + 0.122749i \(0.960829\pi\)
\(788\) −308844. 534933.i −0.0177184 0.0306891i
\(789\) 9.90155e6 1.71500e7i 0.566253 0.980779i
\(790\) −3.07832e7 −1.75487
\(791\) 0 0
\(792\) 6.04195e6 0.342266
\(793\) 1.09346e7 1.89393e7i 0.617478 1.06950i
\(794\) −1.37273e7 2.37765e7i −0.772743 1.33843i
\(795\) −3.36749e6 5.83267e6i −0.188968 0.327303i
\(796\) −733712. + 1.27083e6i −0.0410434 + 0.0710892i
\(797\) 2.45956e7 1.37155 0.685776 0.727813i \(-0.259463\pi\)
0.685776 + 0.727813i \(0.259463\pi\)
\(798\) 0 0
\(799\) 1.75392e6 0.0971948
\(800\) −2.13048e6 + 3.69010e6i −0.117694 + 0.203851i
\(801\) −322947. 559361.i −0.0177848 0.0308042i
\(802\) −101610. 175994.i −0.00557828 0.00966187i
\(803\) −1.37298e7 + 2.37807e7i −0.751408 + 1.30148i
\(804\) −2.13682e6 −0.116581
\(805\) 0 0
\(806\) 212160. 0.0115034
\(807\) 7.96611e6 1.37977e7i 0.430588 0.745801i
\(808\) −227304. 393702.i −0.0122484 0.0212148i
\(809\) −7.76186e6 1.34439e7i −0.416960 0.722196i 0.578672 0.815560i \(-0.303571\pi\)
−0.995632 + 0.0933643i \(0.970238\pi\)
\(810\) −1.53527e6 + 2.65917e6i −0.0822192 + 0.142408i
\(811\) 2.66262e7 1.42153 0.710766 0.703429i \(-0.248349\pi\)
0.710766 + 0.703429i \(0.248349\pi\)
\(812\) 0 0
\(813\) 2.01154e6 0.106734
\(814\) −7.23809e6 + 1.25367e7i −0.382880 + 0.663168i
\(815\) 2.16561e7 + 3.75094e7i 1.14205 + 1.97809i
\(816\) 644112. + 1.11563e6i 0.0338638 + 0.0586539i
\(817\) −1.54652e7 + 2.67865e7i −0.810589 + 1.40398i
\(818\) −3.51707e7 −1.83780
\(819\) 0 0
\(820\) 2.48414e6 0.129016
\(821\) 6.19454e6 1.07293e7i 0.320739 0.555536i −0.659902 0.751352i \(-0.729402\pi\)
0.980641 + 0.195816i \(0.0627356\pi\)
\(822\) −7.13464e6 1.23576e7i −0.368292 0.637901i
\(823\) 1.82815e6 + 3.16645e6i 0.0940831 + 0.162957i 0.909226 0.416304i \(-0.136675\pi\)
−0.815142 + 0.579261i \(0.803341\pi\)
\(824\) 1.10685e7 1.91712e7i 0.567899 0.983630i
\(825\) 1.18242e7 0.604833
\(826\) 0 0
\(827\) 2.80463e7 1.42597 0.712987 0.701178i \(-0.247342\pi\)
0.712987 + 0.701178i \(0.247342\pi\)
\(828\) −680400. + 1.17849e6i −0.0344896 + 0.0597378i
\(829\) 1.05577e7 + 1.82864e7i 0.533558 + 0.924150i 0.999232 + 0.0391930i \(0.0124787\pi\)
−0.465674 + 0.884957i \(0.654188\pi\)
\(830\) 9.40399e6 + 1.62882e7i 0.473824 + 0.820687i
\(831\) 1.54250e6 2.67169e6i 0.0774859 0.134210i
\(832\) 1.22487e7 0.613454
\(833\) 0 0
\(834\) 1.21290e7 0.603826
\(835\) −1.69697e6 + 2.93923e6i −0.0842282 + 0.145888i
\(836\) 2.38339e6 + 4.12816e6i 0.117945 + 0.204287i
\(837\) 29160.0 + 50506.6i 0.00143871 + 0.00249192i
\(838\) −908244. + 1.57312e6i −0.0446779 + 0.0773843i
\(839\) −1.33947e7 −0.656944 −0.328472 0.944514i \(-0.606534\pi\)
−0.328472 + 0.944514i \(0.606534\pi\)
\(840\) 0 0
\(841\) 9.10422e6 0.443867
\(842\) −1.61012e7 + 2.78882e7i −0.782671 + 1.35563i
\(843\) −2.16170e6 3.74418e6i −0.104768 0.181463i
\(844\) −1.04049e6 1.80218e6i −0.0502783 0.0870846i
\(845\) −6.86123e6 + 1.18840e7i −0.330568 + 0.572560i
\(846\) −6.76512e6 −0.324975
\(847\) 0 0
\(848\) 1.08988e7 0.520461
\(849\) −134910. + 233671.i −0.00642355 + 0.0111259i
\(850\) 1.11850e6 + 1.93730e6i 0.0530994 + 0.0919708i
\(851\) 1.14114e7 + 1.97651e7i 0.540151 + 0.935569i
\(852\) −576720. + 998908.i −0.0272186 + 0.0471440i
\(853\) −3.01513e7 −1.41884 −0.709420 0.704786i \(-0.751043\pi\)
−0.709420 + 0.704786i \(0.751043\pi\)
\(854\) 0 0
\(855\) 1.69575e7 0.793317
\(856\) 1.08289e7 1.87563e7i 0.505128 0.874908i
\(857\) 1.19947e7 + 2.07754e7i 0.557875 + 0.966268i 0.997674 + 0.0681717i \(0.0217166\pi\)
−0.439798 + 0.898097i \(0.644950\pi\)
\(858\) 5.29870e6 + 9.17761e6i 0.245726 + 0.425610i
\(859\) −4.43788e6 + 7.68663e6i −0.205207 + 0.355429i −0.950199 0.311645i \(-0.899120\pi\)
0.744992 + 0.667074i \(0.232453\pi\)
\(860\) 3.59549e6 0.165772
\(861\) 0 0
\(862\) −7.06234e6 −0.323728
\(863\) 4.35643e6 7.54556e6i 0.199115 0.344877i −0.749127 0.662427i \(-0.769527\pi\)
0.948242 + 0.317549i \(0.102860\pi\)
\(864\) −524880. 909119.i −0.0239208 0.0414320i
\(865\) 714870. + 1.23819e6i 0.0324853 + 0.0562662i
\(866\) 1.09875e7 1.90309e7i 0.497856 0.862311i
\(867\) −1.26358e7 −0.570895
\(868\) 0 0
\(869\) −2.92045e7 −1.31190
\(870\) 1.14609e7 1.98508e7i 0.513356 0.889159i
\(871\) 1.31177e7 + 2.27205e7i 0.585884 + 1.01478i
\(872\) 8.48215e6 + 1.46915e7i 0.377759 + 0.654298i
\(873\) −5.81831e6 + 1.00776e7i −0.258381 + 0.447530i
\(874\) 6.76368e7 2.99505
\(875\) 0 0
\(876\) 2.22646e6 0.0980288
\(877\) 1.47894e7 2.56160e7i 0.649310 1.12464i −0.333978 0.942581i \(-0.608391\pi\)
0.983288 0.182057i \(-0.0582755\pi\)
\(878\) 7.61023e6 + 1.31813e7i 0.333167 + 0.577062i
\(879\) −891297. 1.54377e6i −0.0389090 0.0673924i
\(880\) −1.96710e7 + 3.40711e7i −0.856287 + 1.48313i
\(881\) −2.45670e7 −1.06638 −0.533190 0.845995i \(-0.679007\pi\)
−0.533190 + 0.845995i \(0.679007\pi\)
\(882\) 0 0
\(883\) 1.45682e7 0.628788 0.314394 0.949293i \(-0.398199\pi\)
0.314394 + 0.949293i \(0.398199\pi\)
\(884\) −111384. + 192923.i −0.00479394 + 0.00830334i
\(885\) −9.64969e6 1.67138e7i −0.414148 0.717325i
\(886\) 1.80451e7 + 3.12550e7i 0.772281 + 1.33763i
\(887\) 8.08568e6 1.40048e7i 0.345070 0.597679i −0.640296 0.768128i \(-0.721188\pi\)
0.985367 + 0.170449i \(0.0545217\pi\)
\(888\) −8.21621e6 −0.349654
\(889\) 0 0
\(890\) 3.73183e6 0.157924
\(891\) −1.45654e6 + 2.52280e6i −0.0614651 + 0.106461i
\(892\) 609472. + 1.05564e6i 0.0256473 + 0.0444224i
\(893\) 1.86806e7 + 3.23558e7i 0.783904 + 1.35776i
\(894\) −2.21600e6 + 3.83822e6i −0.0927311 + 0.160615i
\(895\) 1.19593e7 0.499054
\(896\) 0 0
\(897\) 1.67076e7 0.693319
\(898\) 1.69790e7 2.94084e7i 0.702619 1.21697i
\(899\) −217680. 377033.i −0.00898296 0.0155589i
\(900\) −479358. 830272.i −0.0197267 0.0341676i
\(901\) 604422. 1.04689e6i 0.0248044 0.0429624i
\(902\) 2.12108e7 0.868041
\(903\) 0 0
\(904\) 3.69845e7 1.50522
\(905\) 1.49006e7 2.58086e7i 0.604758 1.04747i
\(906\) −7.74986e6 1.34232e7i −0.313670 0.543293i
\(907\) −1.57223e7 2.72318e7i −0.634596 1.09915i −0.986601 0.163154i \(-0.947833\pi\)
0.352005 0.935998i \(-0.385500\pi\)
\(908\) 577176. 999698.i 0.0232324 0.0402397i
\(909\) 219186. 0.00879839
\(910\) 0 0
\(911\) 1.51427e7 0.604514 0.302257 0.953227i \(-0.402260\pi\)
0.302257 + 0.953227i \(0.402260\pi\)
\(912\) −1.37206e7 + 2.37648e7i −0.546243 + 0.946121i
\(913\) 8.92174e6 + 1.54529e7i 0.354219 + 0.613526i
\(914\) −1.93848e7 3.35754e7i −0.767530 1.32940i
\(915\) −1.73668e7 + 3.00801e7i −0.685751 + 1.18776i
\(916\) −3.08876e6 −0.121631
\(917\) 0 0
\(918\) −551124. −0.0215845
\(919\) −2.07438e7 + 3.59293e7i −0.810214 + 1.40333i 0.102500 + 0.994733i \(0.467316\pi\)
−0.912714 + 0.408598i \(0.866018\pi\)
\(920\) 2.75184e7 + 4.76633e7i 1.07190 + 1.85658i
\(921\) −4.70536e6 8.14993e6i −0.182786 0.316595i
\(922\) 1.01206e7 1.75294e7i 0.392083 0.679108i
\(923\) 1.41617e7 0.547155
\(924\) 0 0
\(925\) −1.60792e7 −0.617889
\(926\) −1.36492e7 + 2.36412e7i −0.523095 + 0.906027i
\(927\) 5.33660e6 + 9.24327e6i 0.203970 + 0.353286i
\(928\) 3.91824e6 + 6.78659e6i 0.149355 + 0.258691i
\(929\) −8.92473e6 + 1.54581e7i −0.339278 + 0.587647i −0.984297 0.176520i \(-0.943516\pi\)
0.645019 + 0.764166i \(0.276849\pi\)
\(930\) −336960. −0.0127753
\(931\) 0 0
\(932\) 1.00894e6 0.0380473
\(933\) 8.26729e6 1.43194e7i 0.310928 0.538542i
\(934\) −6.03407e6 1.04513e7i −0.226330 0.392016i
\(935\) 2.18182e6 + 3.77902e6i 0.0816186 + 0.141368i
\(936\) −3.00737e6 + 5.20891e6i −0.112201 + 0.194338i
\(937\) −2.96399e7 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(938\) 0 0
\(939\) 3.28945e6 0.121747
\(940\) 2.17152e6 3.76118e6i 0.0801575 0.138837i
\(941\) −1.61141e7 2.79104e7i −0.593242 1.02753i −0.993792 0.111251i \(-0.964514\pi\)
0.400550 0.916275i \(-0.368819\pi\)
\(942\) −3.50671e6 6.07379e6i −0.128757 0.223014i
\(943\) 1.67202e7 2.89602e7i 0.612297 1.06053i
\(944\) 3.12309e7 1.14066
\(945\) 0 0
\(946\) 3.06999e7 1.11535
\(947\) −2.42442e7 + 4.19923e7i −0.878484 + 1.52158i −0.0254787 + 0.999675i \(0.508111\pi\)
−0.853005 + 0.521903i \(0.825222\pi\)
\(948\) 1.18397e6 + 2.05069e6i 0.0427877 + 0.0741105i
\(949\) −1.36680e7 2.36736e7i −0.492650 0.853295i
\(950\) −2.38259e7 + 4.12676e7i −0.856524 + 1.48354i
\(951\) −255042. −0.00914451
\(952\) 0 0
\(953\) −2.03264e7 −0.724983 −0.362491 0.931987i \(-0.618074\pi\)
−0.362491 + 0.931987i \(0.618074\pi\)
\(954\) −2.33134e6 + 4.03800e6i −0.0829345 + 0.143647i
\(955\) −1.06629e7 1.84687e7i −0.378327 0.655282i
\(956\) 2.90227e6 + 5.02688e6i 0.102705 + 0.177891i
\(957\) 1.08731e7 1.88328e7i 0.383773 0.664714i
\(958\) −4.56241e7 −1.60613
\(959\) 0 0
\(960\) −1.94538e7 −0.681282
\(961\) 1.43114e7 2.47880e7i 0.499888 0.865832i
\(962\) −7.20548e6 1.24803e7i −0.251030 0.434797i
\(963\) 5.22110e6 + 9.04321e6i 0.181425 + 0.314237i
\(964\) −292796. + 507138.i −0.0101478 + 0.0175765i
\(965\) −1.19810e7 −0.414165
\(966\) 0 0
\(967\) −3.66292e6 −0.125968 −0.0629841 0.998015i \(-0.520062\pi\)
−0.0629841 + 0.998015i \(0.520062\pi\)
\(968\) −3.03114e6 + 5.25009e6i −0.103972 + 0.180085i
\(969\) 1.52183e6 + 2.63588e6i 0.0520662 + 0.0901814i
\(970\) −3.36169e7 5.82262e7i −1.14717 1.98696i
\(971\) 743706. 1.28814e6i 0.0253136 0.0438444i −0.853091 0.521762i \(-0.825275\pi\)
0.878405 + 0.477918i \(0.158608\pi\)
\(972\) 236196. 0.00801875
\(973\) 0 0
\(974\) −4.03867e6 −0.136408
\(975\) −5.88545e6 + 1.01939e7i −0.198275 + 0.343423i
\(976\) −2.81035e7 4.86767e7i −0.944356 1.63567i
\(977\) −2.03965e7 3.53278e7i −0.683627 1.18408i −0.973866 0.227123i \(-0.927068\pi\)
0.290239 0.956954i \(-0.406265\pi\)
\(978\) 1.49927e7 2.59681e7i 0.501224 0.868145i
\(979\) 3.54046e6 0.118060
\(980\) 0 0
\(981\) −8.17922e6 −0.271356
\(982\) −7.41510e6 + 1.28433e7i −0.245380 + 0.425010i
\(983\) −4.63163e6 8.02222e6i −0.152880 0.264795i 0.779405 0.626520i \(-0.215521\pi\)
−0.932285 + 0.361725i \(0.882188\pi\)
\(984\) 6.01927e6 + 1.04257e7i 0.198178 + 0.343255i
\(985\) 6.02246e6 1.04312e7i 0.197780 0.342566i
\(986\) 4.11415e6 0.134768
\(987\) 0 0
\(988\) −4.74531e6 −0.154658
\(989\) 2.42004e7 4.19163e7i 0.786741 1.36268i
\(990\) −8.41558e6 1.45762e7i −0.272895 0.472668i
\(991\) 2.61025e7 + 4.52109e7i 0.844303 + 1.46238i 0.886225 + 0.463255i \(0.153319\pi\)
−0.0419218 + 0.999121i \(0.513348\pi\)
\(992\) 57600.0 99766.1i 0.00185842 0.00321887i
\(993\) 1.74052e7 0.560153
\(994\) 0 0
\(995\) −2.86148e7 −0.916289
\(996\) 723384. 1.25294e6i 0.0231058 0.0400204i
\(997\) −9.33047e6 1.61609e7i −0.297280 0.514904i 0.678233 0.734847i \(-0.262746\pi\)
−0.975513 + 0.219943i \(0.929413\pi\)
\(998\) 1.82446e7 + 3.16005e7i 0.579839 + 1.00431i
\(999\) 1.98069e6 3.43066e6i 0.0627919 0.108759i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.6.e.i.79.1 2
7.2 even 3 147.6.a.b.1.1 1
7.3 odd 6 147.6.e.j.67.1 2
7.4 even 3 inner 147.6.e.i.67.1 2
7.5 odd 6 21.6.a.a.1.1 1
7.6 odd 2 147.6.e.j.79.1 2
21.2 odd 6 441.6.a.j.1.1 1
21.5 even 6 63.6.a.d.1.1 1
28.19 even 6 336.6.a.r.1.1 1
35.12 even 12 525.6.d.b.274.1 2
35.19 odd 6 525.6.a.d.1.1 1
35.33 even 12 525.6.d.b.274.2 2
84.47 odd 6 1008.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.a.1.1 1 7.5 odd 6
63.6.a.d.1.1 1 21.5 even 6
147.6.a.b.1.1 1 7.2 even 3
147.6.e.i.67.1 2 7.4 even 3 inner
147.6.e.i.79.1 2 1.1 even 1 trivial
147.6.e.j.67.1 2 7.3 odd 6
147.6.e.j.79.1 2 7.6 odd 2
336.6.a.r.1.1 1 28.19 even 6
441.6.a.j.1.1 1 21.2 odd 6
525.6.a.d.1.1 1 35.19 odd 6
525.6.d.b.274.1 2 35.12 even 12
525.6.d.b.274.2 2 35.33 even 12
1008.6.a.c.1.1 1 84.47 odd 6