Properties

Label 441.6.a.j.1.1
Level $441$
Weight $6$
Character 441.1
Self dual yes
Analytic conductor $70.729$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,6,Mod(1,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.7292645375\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 441.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.00000 q^{2} +4.00000 q^{4} +78.0000 q^{5} -168.000 q^{8} +468.000 q^{10} -444.000 q^{11} +442.000 q^{13} -1136.00 q^{16} -126.000 q^{17} -2684.00 q^{19} +312.000 q^{20} -2664.00 q^{22} -4200.00 q^{23} +2959.00 q^{25} +2652.00 q^{26} +5442.00 q^{29} -80.0000 q^{31} -1440.00 q^{32} -756.000 q^{34} -5434.00 q^{37} -16104.0 q^{38} -13104.0 q^{40} +7962.00 q^{41} -11524.0 q^{43} -1776.00 q^{44} -25200.0 q^{46} -13920.0 q^{47} +17754.0 q^{50} +1768.00 q^{52} +9594.00 q^{53} -34632.0 q^{55} +32652.0 q^{58} +27492.0 q^{59} -49478.0 q^{61} -480.000 q^{62} +27712.0 q^{64} +34476.0 q^{65} -59356.0 q^{67} -504.000 q^{68} -32040.0 q^{71} +61846.0 q^{73} -32604.0 q^{74} -10736.0 q^{76} -65776.0 q^{79} -88608.0 q^{80} +47772.0 q^{82} +40188.0 q^{83} -9828.00 q^{85} -69144.0 q^{86} +74592.0 q^{88} -7974.00 q^{89} -16800.0 q^{92} -83520.0 q^{94} -209352. q^{95} +143662. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.00000 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(3\) 0 0
\(4\) 4.00000 0.125000
\(5\) 78.0000 1.39531 0.697653 0.716436i \(-0.254228\pi\)
0.697653 + 0.716436i \(0.254228\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −168.000 −0.928078
\(9\) 0 0
\(10\) 468.000 1.47995
\(11\) −444.000 −1.10637 −0.553186 0.833058i \(-0.686588\pi\)
−0.553186 + 0.833058i \(0.686588\pi\)
\(12\) 0 0
\(13\) 442.000 0.725377 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1136.00 −1.10938
\(17\) −126.000 −0.105742 −0.0528711 0.998601i \(-0.516837\pi\)
−0.0528711 + 0.998601i \(0.516837\pi\)
\(18\) 0 0
\(19\) −2684.00 −1.70568 −0.852842 0.522169i \(-0.825123\pi\)
−0.852842 + 0.522169i \(0.825123\pi\)
\(20\) 312.000 0.174413
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) −4200.00 −1.65550 −0.827751 0.561096i \(-0.810380\pi\)
−0.827751 + 0.561096i \(0.810380\pi\)
\(24\) 0 0
\(25\) 2959.00 0.946880
\(26\) 2652.00 0.769379
\(27\) 0 0
\(28\) 0 0
\(29\) 5442.00 1.20161 0.600805 0.799396i \(-0.294847\pi\)
0.600805 + 0.799396i \(0.294847\pi\)
\(30\) 0 0
\(31\) −80.0000 −0.0149515 −0.00747577 0.999972i \(-0.502380\pi\)
−0.00747577 + 0.999972i \(0.502380\pi\)
\(32\) −1440.00 −0.248592
\(33\) 0 0
\(34\) −756.000 −0.112157
\(35\) 0 0
\(36\) 0 0
\(37\) −5434.00 −0.652552 −0.326276 0.945274i \(-0.605794\pi\)
−0.326276 + 0.945274i \(0.605794\pi\)
\(38\) −16104.0 −1.80915
\(39\) 0 0
\(40\) −13104.0 −1.29495
\(41\) 7962.00 0.739712 0.369856 0.929089i \(-0.379407\pi\)
0.369856 + 0.929089i \(0.379407\pi\)
\(42\) 0 0
\(43\) −11524.0 −0.950456 −0.475228 0.879863i \(-0.657634\pi\)
−0.475228 + 0.879863i \(0.657634\pi\)
\(44\) −1776.00 −0.138297
\(45\) 0 0
\(46\) −25200.0 −1.75592
\(47\) −13920.0 −0.919167 −0.459584 0.888134i \(-0.652001\pi\)
−0.459584 + 0.888134i \(0.652001\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 17754.0 1.00432
\(51\) 0 0
\(52\) 1768.00 0.0906721
\(53\) 9594.00 0.469148 0.234574 0.972098i \(-0.424630\pi\)
0.234574 + 0.972098i \(0.424630\pi\)
\(54\) 0 0
\(55\) −34632.0 −1.54373
\(56\) 0 0
\(57\) 0 0
\(58\) 32652.0 1.27450
\(59\) 27492.0 1.02820 0.514098 0.857731i \(-0.328127\pi\)
0.514098 + 0.857731i \(0.328127\pi\)
\(60\) 0 0
\(61\) −49478.0 −1.70250 −0.851251 0.524759i \(-0.824155\pi\)
−0.851251 + 0.524759i \(0.824155\pi\)
\(62\) −480.000 −0.0158585
\(63\) 0 0
\(64\) 27712.0 0.845703
\(65\) 34476.0 1.01212
\(66\) 0 0
\(67\) −59356.0 −1.61539 −0.807695 0.589600i \(-0.799285\pi\)
−0.807695 + 0.589600i \(0.799285\pi\)
\(68\) −504.000 −0.0132178
\(69\) 0 0
\(70\) 0 0
\(71\) −32040.0 −0.754304 −0.377152 0.926151i \(-0.623097\pi\)
−0.377152 + 0.926151i \(0.623097\pi\)
\(72\) 0 0
\(73\) 61846.0 1.35833 0.679164 0.733987i \(-0.262343\pi\)
0.679164 + 0.733987i \(0.262343\pi\)
\(74\) −32604.0 −0.692136
\(75\) 0 0
\(76\) −10736.0 −0.213210
\(77\) 0 0
\(78\) 0 0
\(79\) −65776.0 −1.18577 −0.592884 0.805288i \(-0.702011\pi\)
−0.592884 + 0.805288i \(0.702011\pi\)
\(80\) −88608.0 −1.54792
\(81\) 0 0
\(82\) 47772.0 0.784583
\(83\) 40188.0 0.640326 0.320163 0.947362i \(-0.396262\pi\)
0.320163 + 0.947362i \(0.396262\pi\)
\(84\) 0 0
\(85\) −9828.00 −0.147543
\(86\) −69144.0 −1.00811
\(87\) 0 0
\(88\) 74592.0 1.02680
\(89\) −7974.00 −0.106709 −0.0533545 0.998576i \(-0.516991\pi\)
−0.0533545 + 0.998576i \(0.516991\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −16800.0 −0.206938
\(93\) 0 0
\(94\) −83520.0 −0.974924
\(95\) −209352. −2.37995
\(96\) 0 0
\(97\) 143662. 1.55029 0.775144 0.631784i \(-0.217677\pi\)
0.775144 + 0.631784i \(0.217677\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 11836.0 0.118360
\(101\) −2706.00 −0.0263952 −0.0131976 0.999913i \(-0.504201\pi\)
−0.0131976 + 0.999913i \(0.504201\pi\)
\(102\) 0 0
\(103\) −131768. −1.22382 −0.611909 0.790928i \(-0.709598\pi\)
−0.611909 + 0.790928i \(0.709598\pi\)
\(104\) −74256.0 −0.673206
\(105\) 0 0
\(106\) 57564.0 0.497607
\(107\) 128916. 1.08855 0.544274 0.838908i \(-0.316805\pi\)
0.544274 + 0.838908i \(0.316805\pi\)
\(108\) 0 0
\(109\) −100978. −0.814068 −0.407034 0.913413i \(-0.633437\pi\)
−0.407034 + 0.913413i \(0.633437\pi\)
\(110\) −207792. −1.63737
\(111\) 0 0
\(112\) 0 0
\(113\) −220146. −1.62186 −0.810932 0.585140i \(-0.801040\pi\)
−0.810932 + 0.585140i \(0.801040\pi\)
\(114\) 0 0
\(115\) −327600. −2.30993
\(116\) 21768.0 0.150201
\(117\) 0 0
\(118\) 164952. 1.09057
\(119\) 0 0
\(120\) 0 0
\(121\) 36085.0 0.224059
\(122\) −296868. −1.80578
\(123\) 0 0
\(124\) −320.000 −0.00186894
\(125\) −12948.0 −0.0741187
\(126\) 0 0
\(127\) −74320.0 −0.408880 −0.204440 0.978879i \(-0.565537\pi\)
−0.204440 + 0.978879i \(0.565537\pi\)
\(128\) 212352. 1.14560
\(129\) 0 0
\(130\) 206856. 1.07352
\(131\) −155316. −0.790748 −0.395374 0.918520i \(-0.629385\pi\)
−0.395374 + 0.918520i \(0.629385\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −356136. −1.71338
\(135\) 0 0
\(136\) 21168.0 0.0981369
\(137\) 264246. 1.20284 0.601419 0.798934i \(-0.294602\pi\)
0.601419 + 0.798934i \(0.294602\pi\)
\(138\) 0 0
\(139\) −224612. −0.986043 −0.493022 0.870017i \(-0.664108\pi\)
−0.493022 + 0.870017i \(0.664108\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −192240. −0.800061
\(143\) −196248. −0.802537
\(144\) 0 0
\(145\) 424476. 1.67661
\(146\) 371076. 1.44072
\(147\) 0 0
\(148\) −21736.0 −0.0815690
\(149\) 82074.0 0.302859 0.151429 0.988468i \(-0.451612\pi\)
0.151429 + 0.988468i \(0.451612\pi\)
\(150\) 0 0
\(151\) −287032. −1.02444 −0.512222 0.858853i \(-0.671177\pi\)
−0.512222 + 0.858853i \(0.671177\pi\)
\(152\) 450912. 1.58301
\(153\) 0 0
\(154\) 0 0
\(155\) −6240.00 −0.0208620
\(156\) 0 0
\(157\) −129878. −0.420520 −0.210260 0.977646i \(-0.567431\pi\)
−0.210260 + 0.977646i \(0.567431\pi\)
\(158\) −394656. −1.25770
\(159\) 0 0
\(160\) −112320. −0.346862
\(161\) 0 0
\(162\) 0 0
\(163\) 555284. 1.63699 0.818495 0.574513i \(-0.194809\pi\)
0.818495 + 0.574513i \(0.194809\pi\)
\(164\) 31848.0 0.0924640
\(165\) 0 0
\(166\) 241128. 0.679168
\(167\) 43512.0 0.120731 0.0603654 0.998176i \(-0.480773\pi\)
0.0603654 + 0.998176i \(0.480773\pi\)
\(168\) 0 0
\(169\) −175929. −0.473828
\(170\) −58968.0 −0.156493
\(171\) 0 0
\(172\) −46096.0 −0.118807
\(173\) −18330.0 −0.0465637 −0.0232818 0.999729i \(-0.507412\pi\)
−0.0232818 + 0.999729i \(0.507412\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 504384. 1.22738
\(177\) 0 0
\(178\) −47844.0 −0.113182
\(179\) 153324. 0.357666 0.178833 0.983879i \(-0.442768\pi\)
0.178833 + 0.983879i \(0.442768\pi\)
\(180\) 0 0
\(181\) 382066. 0.866846 0.433423 0.901191i \(-0.357306\pi\)
0.433423 + 0.901191i \(0.357306\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 705600. 1.53643
\(185\) −423852. −0.910510
\(186\) 0 0
\(187\) 55944.0 0.116990
\(188\) −55680.0 −0.114896
\(189\) 0 0
\(190\) −1.25611e6 −2.52432
\(191\) 273408. 0.542285 0.271143 0.962539i \(-0.412598\pi\)
0.271143 + 0.962539i \(0.412598\pi\)
\(192\) 0 0
\(193\) 153602. 0.296827 0.148414 0.988925i \(-0.452583\pi\)
0.148414 + 0.988925i \(0.452583\pi\)
\(194\) 861972. 1.64433
\(195\) 0 0
\(196\) 0 0
\(197\) −154422. −0.283494 −0.141747 0.989903i \(-0.545272\pi\)
−0.141747 + 0.989903i \(0.545272\pi\)
\(198\) 0 0
\(199\) 366856. 0.656694 0.328347 0.944557i \(-0.393508\pi\)
0.328347 + 0.944557i \(0.393508\pi\)
\(200\) −497112. −0.878778
\(201\) 0 0
\(202\) −16236.0 −0.0279963
\(203\) 0 0
\(204\) 0 0
\(205\) 621036. 1.03212
\(206\) −790608. −1.29806
\(207\) 0 0
\(208\) −502112. −0.804715
\(209\) 1.19170e6 1.88712
\(210\) 0 0
\(211\) 520244. 0.804453 0.402227 0.915540i \(-0.368236\pi\)
0.402227 + 0.915540i \(0.368236\pi\)
\(212\) 38376.0 0.0586435
\(213\) 0 0
\(214\) 773496. 1.15458
\(215\) −898872. −1.32618
\(216\) 0 0
\(217\) 0 0
\(218\) −605868. −0.863449
\(219\) 0 0
\(220\) −138528. −0.192966
\(221\) −55692.0 −0.0767030
\(222\) 0 0
\(223\) −304736. −0.410357 −0.205178 0.978725i \(-0.565777\pi\)
−0.205178 + 0.978725i \(0.565777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.32088e6 −1.72025
\(227\) 288588. 0.371718 0.185859 0.982576i \(-0.440493\pi\)
0.185859 + 0.982576i \(0.440493\pi\)
\(228\) 0 0
\(229\) −772190. −0.973051 −0.486525 0.873666i \(-0.661736\pi\)
−0.486525 + 0.873666i \(0.661736\pi\)
\(230\) −1.96560e6 −2.45005
\(231\) 0 0
\(232\) −914256. −1.11519
\(233\) −252234. −0.304378 −0.152189 0.988351i \(-0.548632\pi\)
−0.152189 + 0.988351i \(0.548632\pi\)
\(234\) 0 0
\(235\) −1.08576e6 −1.28252
\(236\) 109968. 0.128525
\(237\) 0 0
\(238\) 0 0
\(239\) 1.45114e6 1.64329 0.821643 0.570002i \(-0.193058\pi\)
0.821643 + 0.570002i \(0.193058\pi\)
\(240\) 0 0
\(241\) 146398. 0.162365 0.0811825 0.996699i \(-0.474130\pi\)
0.0811825 + 0.996699i \(0.474130\pi\)
\(242\) 216510. 0.237651
\(243\) 0 0
\(244\) −197912. −0.212813
\(245\) 0 0
\(246\) 0 0
\(247\) −1.18633e6 −1.23726
\(248\) 13440.0 0.0138762
\(249\) 0 0
\(250\) −77688.0 −0.0786147
\(251\) 607860. 0.609003 0.304501 0.952512i \(-0.401510\pi\)
0.304501 + 0.952512i \(0.401510\pi\)
\(252\) 0 0
\(253\) 1.86480e6 1.83160
\(254\) −445920. −0.433683
\(255\) 0 0
\(256\) 387328. 0.369385
\(257\) 95586.0 0.0902737 0.0451369 0.998981i \(-0.485628\pi\)
0.0451369 + 0.998981i \(0.485628\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 137904. 0.126515
\(261\) 0 0
\(262\) −931896. −0.838715
\(263\) 2.20034e6 1.96156 0.980779 0.195121i \(-0.0625100\pi\)
0.980779 + 0.195121i \(0.0625100\pi\)
\(264\) 0 0
\(265\) 748332. 0.654605
\(266\) 0 0
\(267\) 0 0
\(268\) −237424. −0.201924
\(269\) 1.77025e6 1.49160 0.745801 0.666169i \(-0.232067\pi\)
0.745801 + 0.666169i \(0.232067\pi\)
\(270\) 0 0
\(271\) 223504. 0.184868 0.0924341 0.995719i \(-0.470535\pi\)
0.0924341 + 0.995719i \(0.470535\pi\)
\(272\) 143136. 0.117308
\(273\) 0 0
\(274\) 1.58548e6 1.27580
\(275\) −1.31380e6 −1.04760
\(276\) 0 0
\(277\) −342778. −0.268419 −0.134210 0.990953i \(-0.542850\pi\)
−0.134210 + 0.990953i \(0.542850\pi\)
\(278\) −1.34767e6 −1.04586
\(279\) 0 0
\(280\) 0 0
\(281\) −480378. −0.362925 −0.181463 0.983398i \(-0.558083\pi\)
−0.181463 + 0.983398i \(0.558083\pi\)
\(282\) 0 0
\(283\) 29980.0 0.0222518 0.0111259 0.999938i \(-0.496458\pi\)
0.0111259 + 0.999938i \(0.496458\pi\)
\(284\) −128160. −0.0942880
\(285\) 0 0
\(286\) −1.17749e6 −0.851219
\(287\) 0 0
\(288\) 0 0
\(289\) −1.40398e6 −0.988819
\(290\) 2.54686e6 1.77832
\(291\) 0 0
\(292\) 247384. 0.169791
\(293\) −198066. −0.134785 −0.0673924 0.997727i \(-0.521468\pi\)
−0.0673924 + 0.997727i \(0.521468\pi\)
\(294\) 0 0
\(295\) 2.14438e6 1.43465
\(296\) 912912. 0.605619
\(297\) 0 0
\(298\) 492444. 0.321230
\(299\) −1.85640e6 −1.20086
\(300\) 0 0
\(301\) 0 0
\(302\) −1.72219e6 −1.08659
\(303\) 0 0
\(304\) 3.04902e6 1.89224
\(305\) −3.85928e6 −2.37551
\(306\) 0 0
\(307\) 1.04564e6 0.633191 0.316595 0.948561i \(-0.397460\pi\)
0.316595 + 0.948561i \(0.397460\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −37440.0 −0.0221275
\(311\) 1.83718e6 1.07708 0.538542 0.842598i \(-0.318975\pi\)
0.538542 + 0.842598i \(0.318975\pi\)
\(312\) 0 0
\(313\) 365494. 0.210872 0.105436 0.994426i \(-0.466376\pi\)
0.105436 + 0.994426i \(0.466376\pi\)
\(314\) −779268. −0.446029
\(315\) 0 0
\(316\) −263104. −0.148221
\(317\) 28338.0 0.0158388 0.00791938 0.999969i \(-0.497479\pi\)
0.00791938 + 0.999969i \(0.497479\pi\)
\(318\) 0 0
\(319\) −2.41625e6 −1.32943
\(320\) 2.16154e6 1.18001
\(321\) 0 0
\(322\) 0 0
\(323\) 338184. 0.180363
\(324\) 0 0
\(325\) 1.30788e6 0.686845
\(326\) 3.33170e6 1.73629
\(327\) 0 0
\(328\) −1.33762e6 −0.686510
\(329\) 0 0
\(330\) 0 0
\(331\) 1.93392e6 0.970214 0.485107 0.874455i \(-0.338781\pi\)
0.485107 + 0.874455i \(0.338781\pi\)
\(332\) 160752. 0.0800408
\(333\) 0 0
\(334\) 261072. 0.128054
\(335\) −4.62977e6 −2.25397
\(336\) 0 0
\(337\) −1.88817e6 −0.905664 −0.452832 0.891596i \(-0.649586\pi\)
−0.452832 + 0.891596i \(0.649586\pi\)
\(338\) −1.05557e6 −0.502570
\(339\) 0 0
\(340\) −39312.0 −0.0184428
\(341\) 35520.0 0.0165420
\(342\) 0 0
\(343\) 0 0
\(344\) 1.93603e6 0.882097
\(345\) 0 0
\(346\) −109980. −0.0493882
\(347\) −2.91937e6 −1.30156 −0.650782 0.759264i \(-0.725559\pi\)
−0.650782 + 0.759264i \(0.725559\pi\)
\(348\) 0 0
\(349\) 780682. 0.343092 0.171546 0.985176i \(-0.445124\pi\)
0.171546 + 0.985176i \(0.445124\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 639360. 0.275036
\(353\) 1.33437e6 0.569954 0.284977 0.958534i \(-0.408014\pi\)
0.284977 + 0.958534i \(0.408014\pi\)
\(354\) 0 0
\(355\) −2.49912e6 −1.05249
\(356\) −31896.0 −0.0133386
\(357\) 0 0
\(358\) 919944. 0.379362
\(359\) −1.01743e6 −0.416648 −0.208324 0.978060i \(-0.566801\pi\)
−0.208324 + 0.978060i \(0.566801\pi\)
\(360\) 0 0
\(361\) 4.72776e6 1.90936
\(362\) 2.29240e6 0.919429
\(363\) 0 0
\(364\) 0 0
\(365\) 4.82399e6 1.89528
\(366\) 0 0
\(367\) −837680. −0.324648 −0.162324 0.986737i \(-0.551899\pi\)
−0.162324 + 0.986737i \(0.551899\pi\)
\(368\) 4.77120e6 1.83657
\(369\) 0 0
\(370\) −2.54311e6 −0.965742
\(371\) 0 0
\(372\) 0 0
\(373\) −1.51993e6 −0.565655 −0.282827 0.959171i \(-0.591272\pi\)
−0.282827 + 0.959171i \(0.591272\pi\)
\(374\) 335664. 0.124087
\(375\) 0 0
\(376\) 2.33856e6 0.853059
\(377\) 2.40536e6 0.871620
\(378\) 0 0
\(379\) 2.64465e6 0.945737 0.472869 0.881133i \(-0.343219\pi\)
0.472869 + 0.881133i \(0.343219\pi\)
\(380\) −837408. −0.297494
\(381\) 0 0
\(382\) 1.64045e6 0.575180
\(383\) 2.01336e6 0.701333 0.350667 0.936500i \(-0.385955\pi\)
0.350667 + 0.936500i \(0.385955\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 921612. 0.314833
\(387\) 0 0
\(388\) 574648. 0.193786
\(389\) 726234. 0.243334 0.121667 0.992571i \(-0.461176\pi\)
0.121667 + 0.992571i \(0.461176\pi\)
\(390\) 0 0
\(391\) 529200. 0.175056
\(392\) 0 0
\(393\) 0 0
\(394\) −926532. −0.300691
\(395\) −5.13053e6 −1.65451
\(396\) 0 0
\(397\) −4.57578e6 −1.45710 −0.728549 0.684993i \(-0.759805\pi\)
−0.728549 + 0.684993i \(0.759805\pi\)
\(398\) 2.20114e6 0.696529
\(399\) 0 0
\(400\) −3.36142e6 −1.05045
\(401\) 33870.0 0.0105185 0.00525926 0.999986i \(-0.498326\pi\)
0.00525926 + 0.999986i \(0.498326\pi\)
\(402\) 0 0
\(403\) −35360.0 −0.0108455
\(404\) −10824.0 −0.00329940
\(405\) 0 0
\(406\) 0 0
\(407\) 2.41270e6 0.721966
\(408\) 0 0
\(409\) 5.86178e6 1.73269 0.866346 0.499444i \(-0.166462\pi\)
0.866346 + 0.499444i \(0.166462\pi\)
\(410\) 3.72622e6 1.09473
\(411\) 0 0
\(412\) −527072. −0.152977
\(413\) 0 0
\(414\) 0 0
\(415\) 3.13466e6 0.893451
\(416\) −636480. −0.180323
\(417\) 0 0
\(418\) 7.15018e6 2.00159
\(419\) 302748. 0.0842454 0.0421227 0.999112i \(-0.486588\pi\)
0.0421227 + 0.999112i \(0.486588\pi\)
\(420\) 0 0
\(421\) −5.36708e6 −1.47582 −0.737909 0.674900i \(-0.764187\pi\)
−0.737909 + 0.674900i \(0.764187\pi\)
\(422\) 3.12146e6 0.853252
\(423\) 0 0
\(424\) −1.61179e6 −0.435406
\(425\) −372834. −0.100125
\(426\) 0 0
\(427\) 0 0
\(428\) 515664. 0.136068
\(429\) 0 0
\(430\) −5.39323e6 −1.40662
\(431\) −1.17706e6 −0.305214 −0.152607 0.988287i \(-0.548767\pi\)
−0.152607 + 0.988287i \(0.548767\pi\)
\(432\) 0 0
\(433\) 3.66249e6 0.938766 0.469383 0.882995i \(-0.344476\pi\)
0.469383 + 0.882995i \(0.344476\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −403912. −0.101758
\(437\) 1.12728e7 2.82376
\(438\) 0 0
\(439\) 2.53674e6 0.628225 0.314113 0.949386i \(-0.398293\pi\)
0.314113 + 0.949386i \(0.398293\pi\)
\(440\) 5.81818e6 1.43270
\(441\) 0 0
\(442\) −334152. −0.0813558
\(443\) −6.01504e6 −1.45623 −0.728113 0.685457i \(-0.759603\pi\)
−0.728113 + 0.685457i \(0.759603\pi\)
\(444\) 0 0
\(445\) −621972. −0.148892
\(446\) −1.82842e6 −0.435249
\(447\) 0 0
\(448\) 0 0
\(449\) −5.65965e6 −1.32487 −0.662436 0.749119i \(-0.730477\pi\)
−0.662436 + 0.749119i \(0.730477\pi\)
\(450\) 0 0
\(451\) −3.53513e6 −0.818397
\(452\) −880584. −0.202733
\(453\) 0 0
\(454\) 1.73153e6 0.394267
\(455\) 0 0
\(456\) 0 0
\(457\) −6.46159e6 −1.44727 −0.723634 0.690184i \(-0.757530\pi\)
−0.723634 + 0.690184i \(0.757530\pi\)
\(458\) −4.63314e6 −1.03208
\(459\) 0 0
\(460\) −1.31040e6 −0.288742
\(461\) −3.37353e6 −0.739320 −0.369660 0.929167i \(-0.620526\pi\)
−0.369660 + 0.929167i \(0.620526\pi\)
\(462\) 0 0
\(463\) −4.54974e6 −0.986358 −0.493179 0.869928i \(-0.664165\pi\)
−0.493179 + 0.869928i \(0.664165\pi\)
\(464\) −6.18211e6 −1.33304
\(465\) 0 0
\(466\) −1.51340e6 −0.322842
\(467\) 2.01136e6 0.426773 0.213386 0.976968i \(-0.431551\pi\)
0.213386 + 0.976968i \(0.431551\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −6.51456e6 −1.36032
\(471\) 0 0
\(472\) −4.61866e6 −0.954247
\(473\) 5.11666e6 1.05156
\(474\) 0 0
\(475\) −7.94196e6 −1.61508
\(476\) 0 0
\(477\) 0 0
\(478\) 8.70682e6 1.74297
\(479\) −7.60402e6 −1.51427 −0.757137 0.653257i \(-0.773402\pi\)
−0.757137 + 0.653257i \(0.773402\pi\)
\(480\) 0 0
\(481\) −2.40183e6 −0.473347
\(482\) 878388. 0.172214
\(483\) 0 0
\(484\) 144340. 0.0280074
\(485\) 1.12056e7 2.16313
\(486\) 0 0
\(487\) 673112. 0.128607 0.0643035 0.997930i \(-0.479517\pi\)
0.0643035 + 0.997930i \(0.479517\pi\)
\(488\) 8.31230e6 1.58005
\(489\) 0 0
\(490\) 0 0
\(491\) 2.47170e6 0.462692 0.231346 0.972872i \(-0.425687\pi\)
0.231346 + 0.972872i \(0.425687\pi\)
\(492\) 0 0
\(493\) −685692. −0.127061
\(494\) −7.11797e6 −1.31232
\(495\) 0 0
\(496\) 90880.0 0.0165869
\(497\) 0 0
\(498\) 0 0
\(499\) 6.08152e6 1.09335 0.546677 0.837343i \(-0.315892\pi\)
0.546677 + 0.837343i \(0.315892\pi\)
\(500\) −51792.0 −0.00926483
\(501\) 0 0
\(502\) 3.64716e6 0.645945
\(503\) −846216. −0.149129 −0.0745644 0.997216i \(-0.523757\pi\)
−0.0745644 + 0.997216i \(0.523757\pi\)
\(504\) 0 0
\(505\) −211068. −0.0368293
\(506\) 1.11888e7 1.94271
\(507\) 0 0
\(508\) −297280. −0.0511101
\(509\) −7.66785e6 −1.31183 −0.655917 0.754833i \(-0.727718\pi\)
−0.655917 + 0.754833i \(0.727718\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −4.47130e6 −0.753804
\(513\) 0 0
\(514\) 573516. 0.0957498
\(515\) −1.02779e7 −1.70760
\(516\) 0 0
\(517\) 6.18048e6 1.01694
\(518\) 0 0
\(519\) 0 0
\(520\) −5.79197e6 −0.939329
\(521\) −9.68938e6 −1.56387 −0.781937 0.623357i \(-0.785768\pi\)
−0.781937 + 0.623357i \(0.785768\pi\)
\(522\) 0 0
\(523\) 7.51678e6 1.20165 0.600824 0.799381i \(-0.294839\pi\)
0.600824 + 0.799381i \(0.294839\pi\)
\(524\) −621264. −0.0988435
\(525\) 0 0
\(526\) 1.32021e7 2.08055
\(527\) 10080.0 0.00158101
\(528\) 0 0
\(529\) 1.12037e7 1.74069
\(530\) 4.48999e6 0.694314
\(531\) 0 0
\(532\) 0 0
\(533\) 3.51920e6 0.536570
\(534\) 0 0
\(535\) 1.00554e7 1.51886
\(536\) 9.97181e6 1.49921
\(537\) 0 0
\(538\) 1.06215e7 1.58208
\(539\) 0 0
\(540\) 0 0
\(541\) 7.34325e6 1.07869 0.539343 0.842086i \(-0.318673\pi\)
0.539343 + 0.842086i \(0.318673\pi\)
\(542\) 1.34102e6 0.196082
\(543\) 0 0
\(544\) 181440. 0.0262867
\(545\) −7.87628e6 −1.13587
\(546\) 0 0
\(547\) 2.18296e6 0.311945 0.155973 0.987761i \(-0.450149\pi\)
0.155973 + 0.987761i \(0.450149\pi\)
\(548\) 1.05698e6 0.150355
\(549\) 0 0
\(550\) −7.88278e6 −1.11115
\(551\) −1.46063e7 −2.04957
\(552\) 0 0
\(553\) 0 0
\(554\) −2.05667e6 −0.284702
\(555\) 0 0
\(556\) −898448. −0.123255
\(557\) −1.25466e7 −1.71351 −0.856755 0.515724i \(-0.827523\pi\)
−0.856755 + 0.515724i \(0.827523\pi\)
\(558\) 0 0
\(559\) −5.09361e6 −0.689439
\(560\) 0 0
\(561\) 0 0
\(562\) −2.88227e6 −0.384940
\(563\) 5.15972e6 0.686050 0.343025 0.939326i \(-0.388549\pi\)
0.343025 + 0.939326i \(0.388549\pi\)
\(564\) 0 0
\(565\) −1.71714e7 −2.26300
\(566\) 179880. 0.0236016
\(567\) 0 0
\(568\) 5.38272e6 0.700053
\(569\) −1.17452e7 −1.52083 −0.760414 0.649439i \(-0.775004\pi\)
−0.760414 + 0.649439i \(0.775004\pi\)
\(570\) 0 0
\(571\) −7.54728e6 −0.968725 −0.484362 0.874867i \(-0.660948\pi\)
−0.484362 + 0.874867i \(0.660948\pi\)
\(572\) −784992. −0.100317
\(573\) 0 0
\(574\) 0 0
\(575\) −1.24278e7 −1.56756
\(576\) 0 0
\(577\) −9.28483e6 −1.16101 −0.580503 0.814258i \(-0.697144\pi\)
−0.580503 + 0.814258i \(0.697144\pi\)
\(578\) −8.42389e6 −1.04880
\(579\) 0 0
\(580\) 1.69790e6 0.209577
\(581\) 0 0
\(582\) 0 0
\(583\) −4.25974e6 −0.519053
\(584\) −1.03901e7 −1.26063
\(585\) 0 0
\(586\) −1.18840e6 −0.142961
\(587\) 1.47623e6 0.176831 0.0884155 0.996084i \(-0.471820\pi\)
0.0884155 + 0.996084i \(0.471820\pi\)
\(588\) 0 0
\(589\) 214720. 0.0255026
\(590\) 1.28663e7 1.52168
\(591\) 0 0
\(592\) 6.17302e6 0.723925
\(593\) −1.24007e7 −1.44813 −0.724067 0.689729i \(-0.757730\pi\)
−0.724067 + 0.689729i \(0.757730\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 328296. 0.0378573
\(597\) 0 0
\(598\) −1.11384e7 −1.27371
\(599\) 3.69127e6 0.420348 0.210174 0.977664i \(-0.432597\pi\)
0.210174 + 0.977664i \(0.432597\pi\)
\(600\) 0 0
\(601\) −9.12223e6 −1.03018 −0.515092 0.857135i \(-0.672242\pi\)
−0.515092 + 0.857135i \(0.672242\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.14813e6 −0.128055
\(605\) 2.81463e6 0.312632
\(606\) 0 0
\(607\) 5.67914e6 0.625620 0.312810 0.949816i \(-0.398730\pi\)
0.312810 + 0.949816i \(0.398730\pi\)
\(608\) 3.86496e6 0.424020
\(609\) 0 0
\(610\) −2.31557e7 −2.51961
\(611\) −6.15264e6 −0.666743
\(612\) 0 0
\(613\) −1.40106e7 −1.50593 −0.752966 0.658060i \(-0.771377\pi\)
−0.752966 + 0.658060i \(0.771377\pi\)
\(614\) 6.27382e6 0.671600
\(615\) 0 0
\(616\) 0 0
\(617\) 253686. 0.0268277 0.0134139 0.999910i \(-0.495730\pi\)
0.0134139 + 0.999910i \(0.495730\pi\)
\(618\) 0 0
\(619\) −4.30034e6 −0.451103 −0.225552 0.974231i \(-0.572418\pi\)
−0.225552 + 0.974231i \(0.572418\pi\)
\(620\) −24960.0 −0.00260775
\(621\) 0 0
\(622\) 1.10231e7 1.14242
\(623\) 0 0
\(624\) 0 0
\(625\) −1.02568e7 −1.05030
\(626\) 2.19296e6 0.223664
\(627\) 0 0
\(628\) −519512. −0.0525650
\(629\) 684684. 0.0690023
\(630\) 0 0
\(631\) 1.04150e7 1.04132 0.520662 0.853763i \(-0.325685\pi\)
0.520662 + 0.853763i \(0.325685\pi\)
\(632\) 1.10504e7 1.10048
\(633\) 0 0
\(634\) 170028. 0.0167995
\(635\) −5.79696e6 −0.570514
\(636\) 0 0
\(637\) 0 0
\(638\) −1.44975e7 −1.41007
\(639\) 0 0
\(640\) 1.65635e7 1.59846
\(641\) −4.52714e6 −0.435190 −0.217595 0.976039i \(-0.569821\pi\)
−0.217595 + 0.976039i \(0.569821\pi\)
\(642\) 0 0
\(643\) −1.49687e7 −1.42776 −0.713882 0.700266i \(-0.753065\pi\)
−0.713882 + 0.700266i \(0.753065\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.02910e6 0.191304
\(647\) −1.73020e7 −1.62493 −0.812465 0.583010i \(-0.801875\pi\)
−0.812465 + 0.583010i \(0.801875\pi\)
\(648\) 0 0
\(649\) −1.22064e7 −1.13757
\(650\) 7.84727e6 0.728509
\(651\) 0 0
\(652\) 2.22114e6 0.204624
\(653\) −4.07470e6 −0.373949 −0.186975 0.982365i \(-0.559868\pi\)
−0.186975 + 0.982365i \(0.559868\pi\)
\(654\) 0 0
\(655\) −1.21146e7 −1.10334
\(656\) −9.04483e6 −0.820618
\(657\) 0 0
\(658\) 0 0
\(659\) 3.79475e6 0.340384 0.170192 0.985411i \(-0.445561\pi\)
0.170192 + 0.985411i \(0.445561\pi\)
\(660\) 0 0
\(661\) −1.64261e7 −1.46228 −0.731142 0.682225i \(-0.761012\pi\)
−0.731142 + 0.682225i \(0.761012\pi\)
\(662\) 1.16035e7 1.02907
\(663\) 0 0
\(664\) −6.75158e6 −0.594272
\(665\) 0 0
\(666\) 0 0
\(667\) −2.28564e7 −1.98927
\(668\) 174048. 0.0150913
\(669\) 0 0
\(670\) −2.77786e7 −2.39069
\(671\) 2.19682e7 1.88360
\(672\) 0 0
\(673\) 5.50675e6 0.468660 0.234330 0.972157i \(-0.424710\pi\)
0.234330 + 0.972157i \(0.424710\pi\)
\(674\) −1.13290e7 −0.960602
\(675\) 0 0
\(676\) −703716. −0.0592285
\(677\) 1.83957e7 1.54257 0.771286 0.636488i \(-0.219614\pi\)
0.771286 + 0.636488i \(0.219614\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.65110e6 0.136931
\(681\) 0 0
\(682\) 213120. 0.0175454
\(683\) −1.75835e6 −0.144229 −0.0721146 0.997396i \(-0.522975\pi\)
−0.0721146 + 0.997396i \(0.522975\pi\)
\(684\) 0 0
\(685\) 2.06112e7 1.67833
\(686\) 0 0
\(687\) 0 0
\(688\) 1.30913e7 1.05441
\(689\) 4.24055e6 0.340309
\(690\) 0 0
\(691\) 5.36314e6 0.427291 0.213646 0.976911i \(-0.431466\pi\)
0.213646 + 0.976911i \(0.431466\pi\)
\(692\) −73320.0 −0.00582046
\(693\) 0 0
\(694\) −1.75162e7 −1.38052
\(695\) −1.75197e7 −1.37583
\(696\) 0 0
\(697\) −1.00321e6 −0.0782187
\(698\) 4.68409e6 0.363904
\(699\) 0 0
\(700\) 0 0
\(701\) 2.12606e7 1.63411 0.817054 0.576561i \(-0.195606\pi\)
0.817054 + 0.576561i \(0.195606\pi\)
\(702\) 0 0
\(703\) 1.45849e7 1.11305
\(704\) −1.23041e7 −0.935662
\(705\) 0 0
\(706\) 8.00622e6 0.604527
\(707\) 0 0
\(708\) 0 0
\(709\) 2.07729e6 0.155196 0.0775980 0.996985i \(-0.475275\pi\)
0.0775980 + 0.996985i \(0.475275\pi\)
\(710\) −1.49947e7 −1.11633
\(711\) 0 0
\(712\) 1.33963e6 0.0990343
\(713\) 336000. 0.0247523
\(714\) 0 0
\(715\) −1.53073e7 −1.11979
\(716\) 613296. 0.0447082
\(717\) 0 0
\(718\) −6.10459e6 −0.441922
\(719\) 4.23619e6 0.305600 0.152800 0.988257i \(-0.451171\pi\)
0.152800 + 0.988257i \(0.451171\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.83665e7 2.02518
\(723\) 0 0
\(724\) 1.52826e6 0.108356
\(725\) 1.61029e7 1.13778
\(726\) 0 0
\(727\) −2.14524e7 −1.50536 −0.752678 0.658389i \(-0.771238\pi\)
−0.752678 + 0.658389i \(0.771238\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.89439e7 2.01025
\(731\) 1.45202e6 0.100503
\(732\) 0 0
\(733\) 1.48892e7 1.02355 0.511777 0.859118i \(-0.328987\pi\)
0.511777 + 0.859118i \(0.328987\pi\)
\(734\) −5.02608e6 −0.344341
\(735\) 0 0
\(736\) 6.04800e6 0.411545
\(737\) 2.63541e7 1.78722
\(738\) 0 0
\(739\) 6.99324e6 0.471050 0.235525 0.971868i \(-0.424319\pi\)
0.235525 + 0.971868i \(0.424319\pi\)
\(740\) −1.69541e6 −0.113814
\(741\) 0 0
\(742\) 0 0
\(743\) −1.90428e6 −0.126549 −0.0632745 0.997996i \(-0.520154\pi\)
−0.0632745 + 0.997996i \(0.520154\pi\)
\(744\) 0 0
\(745\) 6.40177e6 0.422581
\(746\) −9.11958e6 −0.599968
\(747\) 0 0
\(748\) 223776. 0.0146238
\(749\) 0 0
\(750\) 0 0
\(751\) 1.95361e7 1.26398 0.631988 0.774978i \(-0.282239\pi\)
0.631988 + 0.774978i \(0.282239\pi\)
\(752\) 1.58131e7 1.01970
\(753\) 0 0
\(754\) 1.44322e7 0.924493
\(755\) −2.23885e7 −1.42941
\(756\) 0 0
\(757\) 1.25183e6 0.0793973 0.0396986 0.999212i \(-0.487360\pi\)
0.0396986 + 0.999212i \(0.487360\pi\)
\(758\) 1.58679e7 1.00311
\(759\) 0 0
\(760\) 3.51711e7 2.20878
\(761\) 2.04472e7 1.27989 0.639944 0.768422i \(-0.278958\pi\)
0.639944 + 0.768422i \(0.278958\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.09363e6 0.0677857
\(765\) 0 0
\(766\) 1.20802e7 0.743876
\(767\) 1.21515e7 0.745831
\(768\) 0 0
\(769\) −2.21064e6 −0.134804 −0.0674020 0.997726i \(-0.521471\pi\)
−0.0674020 + 0.997726i \(0.521471\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 614408. 0.0371034
\(773\) 1.29151e7 0.777405 0.388703 0.921363i \(-0.372923\pi\)
0.388703 + 0.921363i \(0.372923\pi\)
\(774\) 0 0
\(775\) −236720. −0.0141573
\(776\) −2.41352e7 −1.43879
\(777\) 0 0
\(778\) 4.35740e6 0.258095
\(779\) −2.13700e7 −1.26171
\(780\) 0 0
\(781\) 1.42258e7 0.834541
\(782\) 3.17520e6 0.185675
\(783\) 0 0
\(784\) 0 0
\(785\) −1.01305e7 −0.586754
\(786\) 0 0
\(787\) 1.35499e7 0.779830 0.389915 0.920851i \(-0.372504\pi\)
0.389915 + 0.920851i \(0.372504\pi\)
\(788\) −617688. −0.0354367
\(789\) 0 0
\(790\) −3.07832e7 −1.75487
\(791\) 0 0
\(792\) 0 0
\(793\) −2.18693e7 −1.23496
\(794\) −2.74547e7 −1.54549
\(795\) 0 0
\(796\) 1.46742e6 0.0820867
\(797\) −2.45956e7 −1.37155 −0.685776 0.727813i \(-0.740537\pi\)
−0.685776 + 0.727813i \(0.740537\pi\)
\(798\) 0 0
\(799\) 1.75392e6 0.0971948
\(800\) −4.26096e6 −0.235387
\(801\) 0 0
\(802\) 203220. 0.0111566
\(803\) −2.74596e7 −1.50282
\(804\) 0 0
\(805\) 0 0
\(806\) −212160. −0.0115034
\(807\) 0 0
\(808\) 454608. 0.0244968
\(809\) −1.55237e7 −0.833920 −0.416960 0.908925i \(-0.636905\pi\)
−0.416960 + 0.908925i \(0.636905\pi\)
\(810\) 0 0
\(811\) 2.66262e7 1.42153 0.710766 0.703429i \(-0.248349\pi\)
0.710766 + 0.703429i \(0.248349\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.44762e7 0.765760
\(815\) 4.33122e7 2.28410
\(816\) 0 0
\(817\) 3.09304e7 1.62118
\(818\) 3.51707e7 1.83780
\(819\) 0 0
\(820\) 2.48414e6 0.129016
\(821\) 1.23891e7 0.641477 0.320739 0.947168i \(-0.396069\pi\)
0.320739 + 0.947168i \(0.396069\pi\)
\(822\) 0 0
\(823\) −3.65630e6 −0.188166 −0.0940831 0.995564i \(-0.529992\pi\)
−0.0940831 + 0.995564i \(0.529992\pi\)
\(824\) 2.21370e7 1.13580
\(825\) 0 0
\(826\) 0 0
\(827\) −2.80463e7 −1.42597 −0.712987 0.701178i \(-0.752658\pi\)
−0.712987 + 0.701178i \(0.752658\pi\)
\(828\) 0 0
\(829\) −2.11153e7 −1.06712 −0.533558 0.845763i \(-0.679145\pi\)
−0.533558 + 0.845763i \(0.679145\pi\)
\(830\) 1.88080e7 0.947648
\(831\) 0 0
\(832\) 1.22487e7 0.613454
\(833\) 0 0
\(834\) 0 0
\(835\) 3.39394e6 0.168456
\(836\) 4.76678e6 0.235890
\(837\) 0 0
\(838\) 1.81649e6 0.0893557
\(839\) 1.33947e7 0.656944 0.328472 0.944514i \(-0.393466\pi\)
0.328472 + 0.944514i \(0.393466\pi\)
\(840\) 0 0
\(841\) 9.10422e6 0.443867
\(842\) −3.22025e7 −1.56534
\(843\) 0 0
\(844\) 2.08098e6 0.100557
\(845\) −1.37225e7 −0.661135
\(846\) 0 0
\(847\) 0 0
\(848\) −1.08988e7 −0.520461
\(849\) 0 0
\(850\) −2.23700e6 −0.106199
\(851\) 2.28228e7 1.08030
\(852\) 0 0
\(853\) −3.01513e7 −1.41884 −0.709420 0.704786i \(-0.751043\pi\)
−0.709420 + 0.704786i \(0.751043\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2.16579e7 −1.01026
\(857\) 2.39894e7 1.11575 0.557875 0.829925i \(-0.311617\pi\)
0.557875 + 0.829925i \(0.311617\pi\)
\(858\) 0 0
\(859\) 8.87576e6 0.410414 0.205207 0.978719i \(-0.434213\pi\)
0.205207 + 0.978719i \(0.434213\pi\)
\(860\) −3.59549e6 −0.165772
\(861\) 0 0
\(862\) −7.06234e6 −0.323728
\(863\) 8.71286e6 0.398230 0.199115 0.979976i \(-0.436193\pi\)
0.199115 + 0.979976i \(0.436193\pi\)
\(864\) 0 0
\(865\) −1.42974e6 −0.0649706
\(866\) 2.19750e7 0.995711
\(867\) 0 0
\(868\) 0 0
\(869\) 2.92045e7 1.31190
\(870\) 0 0
\(871\) −2.62354e7 −1.17177
\(872\) 1.69643e7 0.755518
\(873\) 0 0
\(874\) 6.76368e7 2.99505
\(875\) 0 0
\(876\) 0 0
\(877\) −2.95788e7 −1.29862 −0.649310 0.760524i \(-0.724942\pi\)
−0.649310 + 0.760524i \(0.724942\pi\)
\(878\) 1.52205e7 0.666333
\(879\) 0 0
\(880\) 3.93420e7 1.71257
\(881\) 2.45670e7 1.06638 0.533190 0.845995i \(-0.320993\pi\)
0.533190 + 0.845995i \(0.320993\pi\)
\(882\) 0 0
\(883\) 1.45682e7 0.628788 0.314394 0.949293i \(-0.398199\pi\)
0.314394 + 0.949293i \(0.398199\pi\)
\(884\) −222768. −0.00958787
\(885\) 0 0
\(886\) −3.60902e7 −1.54456
\(887\) 1.61714e7 0.690141 0.345070 0.938577i \(-0.387855\pi\)
0.345070 + 0.938577i \(0.387855\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.73183e6 −0.157924
\(891\) 0 0
\(892\) −1.21894e6 −0.0512946
\(893\) 3.73613e7 1.56781
\(894\) 0 0
\(895\) 1.19593e7 0.499054
\(896\) 0 0
\(897\) 0 0
\(898\) −3.39579e7 −1.40524
\(899\) −435360. −0.0179659
\(900\) 0 0
\(901\) −1.20884e6 −0.0496087
\(902\) −2.12108e7 −0.868041
\(903\) 0 0
\(904\) 3.69845e7 1.50522
\(905\) 2.98011e7 1.20952
\(906\) 0 0
\(907\) 3.14446e7 1.26919 0.634596 0.772844i \(-0.281167\pi\)
0.634596 + 0.772844i \(0.281167\pi\)
\(908\) 1.15435e6 0.0464648
\(909\) 0 0
\(910\) 0 0
\(911\) −1.51427e7 −0.604514 −0.302257 0.953227i \(-0.597740\pi\)
−0.302257 + 0.953227i \(0.597740\pi\)
\(912\) 0 0
\(913\) −1.78435e7 −0.708439
\(914\) −3.87695e7 −1.53506
\(915\) 0 0
\(916\) −3.08876e6 −0.121631
\(917\) 0 0
\(918\) 0 0
\(919\) 4.14876e7 1.62043 0.810214 0.586134i \(-0.199351\pi\)
0.810214 + 0.586134i \(0.199351\pi\)
\(920\) 5.50368e7 2.14380
\(921\) 0 0
\(922\) −2.02412e7 −0.784167
\(923\) −1.41617e7 −0.547155
\(924\) 0 0
\(925\) −1.60792e7 −0.617889
\(926\) −2.72985e7 −1.04619
\(927\) 0 0
\(928\) −7.83648e6 −0.298711
\(929\) −1.78495e7 −0.678556 −0.339278 0.940686i \(-0.610183\pi\)
−0.339278 + 0.940686i \(0.610183\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.00894e6 −0.0380473
\(933\) 0 0
\(934\) 1.20681e7 0.452661
\(935\) 4.36363e6 0.163237
\(936\) 0 0
\(937\) −2.96399e7 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.34304e6 −0.160315
\(941\) −3.22282e7 −1.18648 −0.593242 0.805024i \(-0.702152\pi\)
−0.593242 + 0.805024i \(0.702152\pi\)
\(942\) 0 0
\(943\) −3.34404e7 −1.22459
\(944\) −3.12309e7 −1.14066
\(945\) 0 0
\(946\) 3.06999e7 1.11535
\(947\) −4.84885e7 −1.75697 −0.878484 0.477772i \(-0.841444\pi\)
−0.878484 + 0.477772i \(0.841444\pi\)
\(948\) 0 0
\(949\) 2.73359e7 0.985300
\(950\) −4.76517e7 −1.71305
\(951\) 0 0
\(952\) 0 0
\(953\) 2.03264e7 0.724983 0.362491 0.931987i \(-0.381926\pi\)
0.362491 + 0.931987i \(0.381926\pi\)
\(954\) 0 0
\(955\) 2.13258e7 0.756654
\(956\) 5.80454e6 0.205411
\(957\) 0 0
\(958\) −4.56241e7 −1.60613
\(959\) 0 0
\(960\) 0 0
\(961\) −2.86228e7 −0.999776
\(962\) −1.44110e7 −0.502060
\(963\) 0 0
\(964\) 585592. 0.0202956
\(965\) 1.19810e7 0.414165
\(966\) 0 0
\(967\) −3.66292e6 −0.125968 −0.0629841 0.998015i \(-0.520062\pi\)
−0.0629841 + 0.998015i \(0.520062\pi\)
\(968\) −6.06228e6 −0.207945
\(969\) 0 0
\(970\) 6.72338e7 2.29434
\(971\) 1.48741e6 0.0506271 0.0253136 0.999680i \(-0.491942\pi\)
0.0253136 + 0.999680i \(0.491942\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.03867e6 0.136408
\(975\) 0 0
\(976\) 5.62070e7 1.88871
\(977\) −4.07930e7 −1.36725 −0.683627 0.729831i \(-0.739599\pi\)
−0.683627 + 0.729831i \(0.739599\pi\)
\(978\) 0 0
\(979\) 3.54046e6 0.118060
\(980\) 0 0
\(981\) 0 0
\(982\) 1.48302e7 0.490759
\(983\) −9.26326e6 −0.305759 −0.152880 0.988245i \(-0.548855\pi\)
−0.152880 + 0.988245i \(0.548855\pi\)
\(984\) 0 0
\(985\) −1.20449e7 −0.395561
\(986\) −4.11415e6 −0.134768
\(987\) 0 0
\(988\) −4.74531e6 −0.154658
\(989\) 4.84008e7 1.57348
\(990\) 0 0
\(991\) −5.22051e7 −1.68861 −0.844303 0.535866i \(-0.819985\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(992\) 115200. 0.00371684
\(993\) 0 0
\(994\) 0 0
\(995\) 2.86148e7 0.916289
\(996\) 0 0
\(997\) 1.86609e7 0.594560 0.297280 0.954790i \(-0.403921\pi\)
0.297280 + 0.954790i \(0.403921\pi\)
\(998\) 3.64891e7 1.15968
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.6.a.j.1.1 1
3.2 odd 2 147.6.a.b.1.1 1
7.6 odd 2 63.6.a.d.1.1 1
21.2 odd 6 147.6.e.i.67.1 2
21.5 even 6 147.6.e.j.67.1 2
21.11 odd 6 147.6.e.i.79.1 2
21.17 even 6 147.6.e.j.79.1 2
21.20 even 2 21.6.a.a.1.1 1
28.27 even 2 1008.6.a.c.1.1 1
84.83 odd 2 336.6.a.r.1.1 1
105.62 odd 4 525.6.d.b.274.1 2
105.83 odd 4 525.6.d.b.274.2 2
105.104 even 2 525.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.a.1.1 1 21.20 even 2
63.6.a.d.1.1 1 7.6 odd 2
147.6.a.b.1.1 1 3.2 odd 2
147.6.e.i.67.1 2 21.2 odd 6
147.6.e.i.79.1 2 21.11 odd 6
147.6.e.j.67.1 2 21.5 even 6
147.6.e.j.79.1 2 21.17 even 6
336.6.a.r.1.1 1 84.83 odd 2
441.6.a.j.1.1 1 1.1 even 1 trivial
525.6.a.d.1.1 1 105.104 even 2
525.6.d.b.274.1 2 105.62 odd 4
525.6.d.b.274.2 2 105.83 odd 4
1008.6.a.c.1.1 1 28.27 even 2