L(s) = 1 | − 4.29i·2-s + (−1.28 − 15.5i)3-s + 13.5·4-s − 75.7·5-s + (−66.6 + 5.52i)6-s − 195. i·8-s + (−239. + 40.0i)9-s + 324. i·10-s − 683. i·11-s + (−17.5 − 211. i)12-s + 904. i·13-s + (97.5 + 1.17e3i)15-s − 404.·16-s − 831.·17-s + (171. + 1.02e3i)18-s + 46.6i·19-s + ⋯ |
L(s) = 1 | − 0.758i·2-s + (−0.0825 − 0.996i)3-s + 0.424·4-s − 1.35·5-s + (−0.755 + 0.0626i)6-s − 1.08i·8-s + (−0.986 + 0.164i)9-s + 1.02i·10-s − 1.70i·11-s + (−0.0350 − 0.423i)12-s + 1.48i·13-s + (0.111 + 1.34i)15-s − 0.394·16-s − 0.697·17-s + (0.124 + 0.748i)18-s + 0.0296i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 - 0.943i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.332 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.1869935926\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1869935926\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.28 + 15.5i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 4.29iT - 32T^{2} \) |
| 5 | \( 1 + 75.7T + 3.12e3T^{2} \) |
| 11 | \( 1 + 683. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 904. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 831.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 46.6iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 3.22e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 644. iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 818. iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 1.25e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + 3.58e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.27e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 5.08e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 2.92e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 1.42e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 1.02e3iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 6.56e3T + 1.35e9T^{2} \) |
| 71 | \( 1 - 2.16e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 5.61e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 2.45e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.13e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.20e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.31e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.51036109572201462064840964177, −10.98701510542629171588844095988, −9.129807670085293898887900189984, −8.036814070211465320338010909702, −7.07544834046876899528250199749, −6.08586205381863178758709018230, −4.00982292116556005436739873174, −2.89831289878840979204456459288, −1.36846938214234819755346834524, −0.06418457287978335987803504623,
2.72255658329901886893197552849, 4.22648151257293643908636613803, 5.16174548060585069648976691342, 6.65523804492098805017182470238, 7.73880294262258732320906075180, 8.489989433466123219265975043360, 10.01063597528495768105971247657, 10.91834697365677272769439191879, 11.80811555343756893292329577271, 12.74869750486089513589539142314