L(s) = 1 | − 4.29i·2-s + (−1.28 − 15.5i)3-s + 13.5·4-s − 75.7·5-s + (−66.6 + 5.52i)6-s − 195. i·8-s + (−239. + 40.0i)9-s + 324. i·10-s − 683. i·11-s + (−17.5 − 211. i)12-s + 904. i·13-s + (97.5 + 1.17e3i)15-s − 404.·16-s − 831.·17-s + (171. + 1.02e3i)18-s + 46.6i·19-s + ⋯ |
L(s) = 1 | − 0.758i·2-s + (−0.0825 − 0.996i)3-s + 0.424·4-s − 1.35·5-s + (−0.755 + 0.0626i)6-s − 1.08i·8-s + (−0.986 + 0.164i)9-s + 1.02i·10-s − 1.70i·11-s + (−0.0350 − 0.423i)12-s + 1.48i·13-s + (0.111 + 1.34i)15-s − 0.394·16-s − 0.697·17-s + (0.124 + 0.748i)18-s + 0.0296i·19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(0.332−0.943i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(0.332−0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
0.332−0.943i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(146,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), 0.332−0.943i)
|
Particular Values
L(3) |
≈ |
0.1869935926 |
L(21) |
≈ |
0.1869935926 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.28+15.5i)T |
| 7 | 1 |
good | 2 | 1+4.29iT−32T2 |
| 5 | 1+75.7T+3.12e3T2 |
| 11 | 1+683.iT−1.61e5T2 |
| 13 | 1−904.iT−3.71e5T2 |
| 17 | 1+831.T+1.41e6T2 |
| 19 | 1−46.6iT−2.47e6T2 |
| 23 | 1−3.22e3iT−6.43e6T2 |
| 29 | 1+644.iT−2.05e7T2 |
| 31 | 1+818.iT−2.86e7T2 |
| 37 | 1−1.25e4T+6.93e7T2 |
| 41 | 1+3.58e3T+1.15e8T2 |
| 43 | 1+1.27e4T+1.47e8T2 |
| 47 | 1−5.08e3T+2.29e8T2 |
| 53 | 1−2.92e4iT−4.18e8T2 |
| 59 | 1+1.42e4T+7.14e8T2 |
| 61 | 1+1.02e3iT−8.44e8T2 |
| 67 | 1+6.56e3T+1.35e9T2 |
| 71 | 1−2.16e4iT−1.80e9T2 |
| 73 | 1+5.61e4iT−2.07e9T2 |
| 79 | 1+2.45e4T+3.07e9T2 |
| 83 | 1+1.13e5T+3.93e9T2 |
| 89 | 1+1.20e4T+5.58e9T2 |
| 97 | 1+1.31e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51036109572201462064840964177, −10.98701510542629171588844095988, −9.129807670085293898887900189984, −8.036814070211465320338010909702, −7.07544834046876899528250199749, −6.08586205381863178758709018230, −4.00982292116556005436739873174, −2.89831289878840979204456459288, −1.36846938214234819755346834524, −0.06418457287978335987803504623,
2.72255658329901886893197552849, 4.22648151257293643908636613803, 5.16174548060585069648976691342, 6.65523804492098805017182470238, 7.73880294262258732320906075180, 8.489989433466123219265975043360, 10.01063597528495768105971247657, 10.91834697365677272769439191879, 11.80811555343756893292329577271, 12.74869750486089513589539142314