L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.382 − 0.0761i)3-s + (−0.707 − 0.707i)4-s + (0.216 − 0.324i)6-s + (0.923 − 0.382i)8-s + (−0.783 − 0.324i)9-s + (0.216 + 0.324i)12-s + (−0.216 − 0.324i)13-s + i·16-s + (0.599 − 0.599i)18-s + (0.382 − 0.923i)23-s + (−0.382 + 0.0761i)24-s + (−0.382 − 0.923i)25-s + (0.382 − 0.0761i)26-s + (0.599 + 0.400i)27-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.382 − 0.0761i)3-s + (−0.707 − 0.707i)4-s + (0.216 − 0.324i)6-s + (0.923 − 0.382i)8-s + (−0.783 − 0.324i)9-s + (0.216 + 0.324i)12-s + (−0.216 − 0.324i)13-s + i·16-s + (0.599 − 0.599i)18-s + (0.382 − 0.923i)23-s + (−0.382 + 0.0761i)24-s + (−0.382 − 0.923i)25-s + (0.382 − 0.0761i)26-s + (0.599 + 0.400i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5649418583\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5649418583\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.382 - 0.923i)T \) |
| 23 | \( 1 + (-0.382 + 0.923i)T \) |
good | 3 | \( 1 + (0.382 + 0.0761i)T + (0.923 + 0.382i)T^{2} \) |
| 5 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 7 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 13 | \( 1 + (0.216 + 0.324i)T + (-0.382 + 0.923i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (-0.324 + 1.63i)T + (-0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 - 0.765iT - T^{2} \) |
| 37 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (-0.765 + 1.84i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 47 | \( 1 + (1 + i)T + iT^{2} \) |
| 53 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 59 | \( 1 + (1.08 - 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 61 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 71 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-1.30 - 0.541i)T + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 89 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.502773636445319094921367300633, −8.636184898156146022643568278194, −8.133821140127717741130988127969, −7.12420939440511903529401135306, −6.38031355919030160921873671676, −5.70769083875309325573594794541, −4.89940591060155826179476359165, −3.87651153937540560657556111275, −2.41518409875495160665413968061, −0.58323883456524963885411174514,
1.41711752381582801047826787520, 2.68797926960873314046303226804, 3.54444734333588368451289385143, 4.72488352614317995457831663074, 5.38625195644639512617372997267, 6.52527687308122578185593793519, 7.64264638962786805602653356793, 8.226173239665050781684233710546, 9.324167336161224357393237010030, 9.582006840586143901858827412337