L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.382 − 0.0761i)3-s + (−0.707 − 0.707i)4-s + (0.216 − 0.324i)6-s + (0.923 − 0.382i)8-s + (−0.783 − 0.324i)9-s + (0.216 + 0.324i)12-s + (−0.216 − 0.324i)13-s + i·16-s + (0.599 − 0.599i)18-s + (0.382 − 0.923i)23-s + (−0.382 + 0.0761i)24-s + (−0.382 − 0.923i)25-s + (0.382 − 0.0761i)26-s + (0.599 + 0.400i)27-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.382 − 0.0761i)3-s + (−0.707 − 0.707i)4-s + (0.216 − 0.324i)6-s + (0.923 − 0.382i)8-s + (−0.783 − 0.324i)9-s + (0.216 + 0.324i)12-s + (−0.216 − 0.324i)13-s + i·16-s + (0.599 − 0.599i)18-s + (0.382 − 0.923i)23-s + (−0.382 + 0.0761i)24-s + (−0.382 − 0.923i)25-s + (0.382 − 0.0761i)26-s + (0.599 + 0.400i)27-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.881+0.471i)Λ(1−s)
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.881+0.471i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
0.881+0.471i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(413,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :0), 0.881+0.471i)
|
Particular Values
L(21) |
≈ |
0.5649418583 |
L(21) |
≈ |
0.5649418583 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.382−0.923i)T |
| 23 | 1+(−0.382+0.923i)T |
good | 3 | 1+(0.382+0.0761i)T+(0.923+0.382i)T2 |
| 5 | 1+(0.382+0.923i)T2 |
| 7 | 1+(−0.707+0.707i)T2 |
| 11 | 1+(0.923−0.382i)T2 |
| 13 | 1+(0.216+0.324i)T+(−0.382+0.923i)T2 |
| 17 | 1−iT2 |
| 19 | 1+(−0.382+0.923i)T2 |
| 29 | 1+(−0.324+1.63i)T+(−0.923−0.382i)T2 |
| 31 | 1−0.765iT−T2 |
| 37 | 1+(−0.382−0.923i)T2 |
| 41 | 1+(−0.765+1.84i)T+(−0.707−0.707i)T2 |
| 43 | 1+(−0.923+0.382i)T2 |
| 47 | 1+(1+i)T+iT2 |
| 53 | 1+(0.923−0.382i)T2 |
| 59 | 1+(1.08−1.63i)T+(−0.382−0.923i)T2 |
| 61 | 1+(−0.923−0.382i)T2 |
| 67 | 1+(−0.923−0.382i)T2 |
| 71 | 1+(−1.70+0.707i)T+(0.707−0.707i)T2 |
| 73 | 1+(−1.30−0.541i)T+(0.707+0.707i)T2 |
| 79 | 1+iT2 |
| 83 | 1+(−0.382+0.923i)T2 |
| 89 | 1+(0.707−0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.502773636445319094921367300633, −8.636184898156146022643568278194, −8.133821140127717741130988127969, −7.12420939440511903529401135306, −6.38031355919030160921873671676, −5.70769083875309325573594794541, −4.89940591060155826179476359165, −3.87651153937540560657556111275, −2.41518409875495160665413968061, −0.58323883456524963885411174514,
1.41711752381582801047826787520, 2.68797926960873314046303226804, 3.54444734333588368451289385143, 4.72488352614317995457831663074, 5.38625195644639512617372997267, 6.52527687308122578185593793519, 7.64264638962786805602653356793, 8.226173239665050781684233710546, 9.324167336161224357393237010030, 9.582006840586143901858827412337