L(s) = 1 | + (0.793 − 0.608i)2-s + (0.996 + 1.49i)3-s + (0.258 − 0.965i)4-s + (1.69 + 0.576i)6-s + (−0.382 − 0.923i)8-s + (−0.848 + 2.04i)9-s + (1.69 − 0.576i)12-s + (−0.0255 + 0.128i)13-s + (−0.866 − 0.499i)16-s + (0.573 + 2.14i)18-s + (0.923 + 0.382i)23-s + (0.996 − 1.49i)24-s + (−0.923 + 0.382i)25-s + (0.0578 + 0.117i)26-s + (−2.14 + 0.426i)27-s + ⋯ |
L(s) = 1 | + (0.793 − 0.608i)2-s + (0.996 + 1.49i)3-s + (0.258 − 0.965i)4-s + (1.69 + 0.576i)6-s + (−0.382 − 0.923i)8-s + (−0.848 + 2.04i)9-s + (1.69 − 0.576i)12-s + (−0.0255 + 0.128i)13-s + (−0.866 − 0.499i)16-s + (0.573 + 2.14i)18-s + (0.923 + 0.382i)23-s + (0.996 − 1.49i)24-s + (−0.923 + 0.382i)25-s + (0.0578 + 0.117i)26-s + (−2.14 + 0.426i)27-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.956−0.290i)Λ(1−s)
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.956−0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
0.956−0.290i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(45,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :0), 0.956−0.290i)
|
Particular Values
L(21) |
≈ |
2.212219074 |
L(21) |
≈ |
2.212219074 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.793+0.608i)T |
| 23 | 1+(−0.923−0.382i)T |
good | 3 | 1+(−0.996−1.49i)T+(−0.382+0.923i)T2 |
| 5 | 1+(0.923−0.382i)T2 |
| 7 | 1+(0.707−0.707i)T2 |
| 11 | 1+(−0.382−0.923i)T2 |
| 13 | 1+(0.0255−0.128i)T+(−0.923−0.382i)T2 |
| 17 | 1−iT2 |
| 19 | 1+(−0.923−0.382i)T2 |
| 29 | 1+(−0.534+0.357i)T+(0.382−0.923i)T2 |
| 31 | 1+1.58iT−T2 |
| 37 | 1+(−0.923+0.382i)T2 |
| 41 | 1+(0.923+0.382i)T+(0.707+0.707i)T2 |
| 43 | 1+(0.382+0.923i)T2 |
| 47 | 1+(0.366+0.366i)T+iT2 |
| 53 | 1+(−0.382−0.923i)T2 |
| 59 | 1+(0.216+1.08i)T+(−0.923+0.382i)T2 |
| 61 | 1+(0.382−0.923i)T2 |
| 67 | 1+(0.382−0.923i)T2 |
| 71 | 1+(0.758+1.83i)T+(−0.707+0.707i)T2 |
| 73 | 1+(0.739−1.78i)T+(−0.707−0.707i)T2 |
| 79 | 1+iT2 |
| 83 | 1+(−0.923−0.382i)T2 |
| 89 | 1+(−0.707+0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.729888826586958383556505285740, −9.321923383710288727650359690149, −8.400564493487693475555958141878, −7.42269615365605785112358305589, −6.13337314763184219359456288258, −5.18944794286851368948634978607, −4.49184378923829077023423206270, −3.71207868526650239601602077435, −3.00847442449069907432304846725, −2.00174920391195998122248364421,
1.61210529516156052320820393839, 2.76576470196142004438640951467, 3.38715310997106749300321994899, 4.66126978984204951093912704311, 5.76962261611922621203912069702, 6.69260700264179948398905855023, 7.06936667805800211352064037648, 7.976924962315707449962961760406, 8.486196515211007956700834465562, 9.182391304213612287744350284788