L(s) = 1 | + (0.793 − 0.608i)2-s + (0.996 + 1.49i)3-s + (0.258 − 0.965i)4-s + (1.69 + 0.576i)6-s + (−0.382 − 0.923i)8-s + (−0.848 + 2.04i)9-s + (1.69 − 0.576i)12-s + (−0.0255 + 0.128i)13-s + (−0.866 − 0.499i)16-s + (0.573 + 2.14i)18-s + (0.923 + 0.382i)23-s + (0.996 − 1.49i)24-s + (−0.923 + 0.382i)25-s + (0.0578 + 0.117i)26-s + (−2.14 + 0.426i)27-s + ⋯ |
L(s) = 1 | + (0.793 − 0.608i)2-s + (0.996 + 1.49i)3-s + (0.258 − 0.965i)4-s + (1.69 + 0.576i)6-s + (−0.382 − 0.923i)8-s + (−0.848 + 2.04i)9-s + (1.69 − 0.576i)12-s + (−0.0255 + 0.128i)13-s + (−0.866 − 0.499i)16-s + (0.573 + 2.14i)18-s + (0.923 + 0.382i)23-s + (0.996 − 1.49i)24-s + (−0.923 + 0.382i)25-s + (0.0578 + 0.117i)26-s + (−2.14 + 0.426i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.212219074\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.212219074\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.793 + 0.608i)T \) |
| 23 | \( 1 + (-0.923 - 0.382i)T \) |
good | 3 | \( 1 + (-0.996 - 1.49i)T + (-0.382 + 0.923i)T^{2} \) |
| 5 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (0.0255 - 0.128i)T + (-0.923 - 0.382i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.534 + 0.357i)T + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + 1.58iT - T^{2} \) |
| 37 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (0.923 + 0.382i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 53 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 59 | \( 1 + (0.216 + 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 61 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 71 | \( 1 + (0.758 + 1.83i)T + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.739 - 1.78i)T + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.729888826586958383556505285740, −9.321923383710288727650359690149, −8.400564493487693475555958141878, −7.42269615365605785112358305589, −6.13337314763184219359456288258, −5.18944794286851368948634978607, −4.49184378923829077023423206270, −3.71207868526650239601602077435, −3.00847442449069907432304846725, −2.00174920391195998122248364421,
1.61210529516156052320820393839, 2.76576470196142004438640951467, 3.38715310997106749300321994899, 4.66126978984204951093912704311, 5.76962261611922621203912069702, 6.69260700264179948398905855023, 7.06936667805800211352064037648, 7.976924962315707449962961760406, 8.486196515211007956700834465562, 9.182391304213612287744350284788